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a b s t r a c t

This paper proposes a robust determinationmethod for the number of common factors in the approximate
factor models. The new method is based on the ratio values of some transformation function of adjacent
eigenvalues arranged in descending order. Under some mild conditions, the resulted estimator can be
proved to be consistent. It can be further shown that, comparing with the competitors in the existing
literature, the new method has desired performance on truly selecting the value of the number of latent
common factors whether there are dominant factors or not. Monte Carlo simulation is carried out for
illustration.
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1. Introduction

In the analysis of large dimensional factormodels (Chamberlain
and Rothschild, 1983), one of fundamental issues is how to
consistently determine the number of common factors. In the
last decade, a lot of work focus on the issue for the approximate
factor models with large individual number n and time length
T . The reader may refer to, e.g., Bai and Ng (2002), Bai and
Ng (2007), Onatski (2006, 2010), Hallin and Liska (2007), Pan
and Yao (2008), Bathia et al. (2010), Lam and Yao (2012), Ahn
and Horenstein (2013), Caner and Han (2014) and Xia et al.
(2015) for more details. Clearly, various methods can lead to
different estimation results for the number of factors due to their
different predetermined conditions and different applicability,
although they are all proven to be consistent. In this paper we
will propose a robust determination method for the number of
factors in approximate factor models, which can be expected to
have desired performance. For the sake of simplicity and without
loss of generality, wemainly focus on the static factormodels here.

In the following, we give some simple reviews for the main
determinationmethods in the static factormodels in the literature.
Up to our knowledge, Bai and Ng (2002) should be the first one
to study theoretically the determination method of the number of
factors in approximate factormodels with large individual number
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and large time length. They obtained the estimators of the number
of factors by minimizing one of the two model selection criterion
functions, names PC and IC. One serious problem is that, when
the penalty term is replaced by its limit multiple, the resulted
estimator can be different based on the finite sample in practice
although its asymptotic consistency still hold. Onatski (2006, 2010)
obtained a consistent estimator of the (r + 1)th largest eigenvalue
and then the corresponding threshold value can be found easily
only if it is slightly larger than the (r + 1)th largest eigenvalue,
where r is the true number of common factors. However, the
method is only available for the case in which the idiosyncratic
errors are either autocorrelated or cross-sectionally correlated, but
not both (Ahn and Horenstein, 2013). As reported in Ahn and
Horenstein (2013), the methods proposed by Bai and Ng (2002)
and Onatski (2010) have worse finite sample properties in the case
with cross-sectional dependency although they do performwell in
the case with independent idiosyncratic errors. Two eigenvalues-
based ratio-type estimators of Ahn and Horenstein (2013) were
proposed and shown to perform well even when the idiosyncratic
errors are cross-sectionally dependent or serially correlated. Lam
and Yao (2012) used the similar idea to deal with the factor
modeling for high-dimensional time series based on the dimension
reduction. Caner and Han (2014) followed the similar idea of Bai
and Ng (2002) and then proposed a group bridge estimator, which
is also dependent on the choices of some parameters in finite
sample size. This is similar to that of Bai and Ng (2002). All the
above estimators need to predetermine the possible maximum
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of the number of factors, which may lead to overestimation or
underestimation of the number when the maximum (hereafter,
denoted by rmax) is too large or too small, as argued by Ahn
and Horenstein (2013). Xia et al. (2015) proposed a ridge-type
estimator and a BIC-type estimator for the number of factors in
factor modeling for volatility of multivariate time series. However,
all the eigenvalue ratio-type estimators in the existing literature
have worse performance when some factors are dominant, which
can be partly verified in the simulation study in this paper.

This paper proposes a robust determination method for the
number of common factors in the approximate factor models. The
new method is based on the ratio values of some transformation
function of adjacent eigenvalues arranged in descending order and
the use of the so-called ridge-type parameter (e.g., Xia et al., 2015).
Under some mild conditions, the resulted estimator can be proved
to be consistent. It can be further shown that, comparing with
the competitors in the existing literature, the new estimator has
desired performance on truly selecting the value of the number of
latent common factors whether there are dominant factors or not.
Monte Carlo simulation is carried out for illustration.

The rest of this paper is organized as follows. In the next section,
we propose the new determination method of the number of
factors in the approximate factor models and state its asymptotic
consistency. Section 3 carries out some simulation experiments
to examine the finite sample performance of the new estimation.
Technical details on the proofs of Theorem 1 are described in the
Appendix.

2. Estimation of the number of factors

Consider the following static approximate factor model

yit = λ′

iFt + uit , i = 1, 2, . . . , n, t = 1, 2, . . . , T , (1)

where Ft is an r-dimensional vector of common factors, λi is an r-
dimensional vector of factor loadings, and uit is the idiosyncratic
error. The number r of factors is unknown and needs to be
estimated. Denote F = (F1, F2, . . . , FT )′, Λ = (λ1, . . . , λn)

′, Y is
the n×T observationmatrixwith the element yit , andU is the n×T
idiosyncratic error matrix with the element uit , i = 1, . . . , n, t =

1, . . . , T . Model (1) can be rewritten as the following matrix form

Y = ΛF ′
+ U . (2)

For the sake of notations, let m = min{n, T } and M =

max{n, T }. Denote the eigenvalues of Y ′Y
nT arranged in descending

order µ̃nT ,i, i = 1, . . . , T . That is, µ̃nT ,i =: Ψi(
Y ′Y
nT ) means

the ith largest eigenvalue of Y ′Y
nT (hereafter Ψi(·) means the ith

largest eigenvalue of a positive semi-definite matrix ·). Ahn and
Horenstein (2013) found that the first r eigenvalues are Op(1)
and the rest are at most Op(

1
m ) under some conditions, and then

proposed the eigenvalue-based ratio-type estimators as follows

r̂ER = arg max
1≤i≤rmax

µ̃nT ,i

µ̃nT ,i+1
,

r̂GR = arg max
1≤i≤rmax

ln(Vi−1) − ln(Vi)

ln(Vi) − ln(Vi+1)
,

(3)

where Vi =
m

j=i+1 µ̃nT ,j, rmax is the predetermined possible
maximum value of the number of factors. This eigenvalue-based
ratio-type estimation method has also been used by Wang (2012)
and Lam and Yao (2012) for different models and scenarios. Ahn
and Horenstein (2013) argued that the two objective functions
in (3) at the true value point of the number of factors are
Op(m) and the others Op(1), and then the eigenvalue ratio-based
estimators can be proven to be consistent when m is sufficiently

large. In practice, however, when some factors are dominant,
the other factors cannot be detected accurately and then the
number of factors may be underestimated. In order to avoid the
underestimation of the number especially in the case with the
existence of dominant factors, we can use the modified objective
function

2Φ(µ̃nT ,i) − 1
2Φ(µ̃nT ,i+1) − 1

(4)

to replace those of (3) suggested by Ahn and Horenstein (2013),
where Φ(·) is the cumulated distributed function (Abbreviation:
cdf) of the standard normal distribution. Note that the transforma-
tion function 2Φ(µ̃nT ,i) − 1 = Pr(|ξ | ≤ µ̃nT ,i), where ξ is a stan-
dardly normally distributed random variable. Clearly, this trans-
formation function’s value is close to 0 (or 1) when the positive
eigenvalue µ̃nT ,i is very small (or very large). One of main roles of
the transformation is the standardization or shrinkage to the large
eigenvalues, and then avoid the underestimation of the number
of factors when there exist some dominant factors. By the similar
method in Ahn and Horenstein (2013), the above objective func-
tion in (4) can be proven to be Op(1) as i < r,Op(m) as i = r and
Op(1) as rmax ≥ i > r , which can be expected to guarantee the
consistency of the estimation.

Although (Ahn and Horenstein, 2013) argued that the adjacent
eigenvalue ratio estimator is not sensitive to the choice of rmax
unless it is too large or too small, the choice is always a problem
due to its arbitrariness in practice. Moreover, the ratio value of two
adjacent eigenvalues may be not stable when the two eigenvalues
are very close to zero or even likely to be practical zero (see, e.g.,
Lam and Yao, 2012, Xia et al., 2015). So, in this paper we consider
the ridge-type estimator as follows,

r̂ = arg max
1≤i≤m−1

2Φ(µ̃nT ,i + c) − 1
2Φ(µ̃nT ,i+1 + c) − 1

. (5)

The ridge-type estimation method is also used by Xia et al. (2015)
to avoid the instability of the 0

0 -type ratio values. AsXia et al. (2015)
argued, this estimate is a modification through adding a positive
value in the eigenvalues, which can be seen as an eigenvalues
decomposition of the target matrix plus the diagonal matrix cIT
(hereafter Ik means the k × k identity matrix). Clearly, the ridge-
type estimator can avoid the instability of the 0

0 -type ratio values
and then need not to preset the possible maximum values of the
number of factors (rmax).

Remark 1. As Xia et al. (2015) argued, two principles are
necessary for the choice of c. Firstly, it should not deteriorate the
effectiveness for estimating the number r , and then the absolute
value of c should be as small as possible. Secondly, in order to
guarantee the consistency of the estimate, the convergence rate of
c to zero should be slower thanO( 1

m )which is the convergence rate
of the corresponding estimates of those zero eigenvalues. So, it can
be suggested c =

log(m)

10m in practice, which is shown to performwell
in the simulation study in the next section. If one thinks that the
choice of the parameter c is also arbitrary and similar to that of the
possible maximum number rmax, and then the following alterative
is suggested,

r̂0 = arg max
1≤i≤rmax

2Φ(µ̃nT ,i) − 1
2Φ(µ̃nT ,i+1) − 1

.

Let d be a large positive constant. Our theoretical results are
derived based on the assumptions as follows.

Assumption A. Let µnT ,i = Ψi(
Λ′Λ

n
F ′F
T ) for i = 1, . . . , r . Then, for

each i = 1, . . . , r , plimm→∞µnT ,i = µi ∈ (0, +∞). Moreover, the
number r of common factors is assumed to be finite.
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