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a b s t r a c t

The notion of the group of orthogonal matrices acting on the set of all feasible identification schemes is
used to characterize the identification problem arising in structural vector autoregressions. This approach
presents several conceptual advantages. First, it provides a fundamental justification for the use of
the normalized Haar measure as the natural uninformative prior. Second, it allows to derive the joint
distribution of blocks of parameters defining an identification scheme. Finally, it provides a coherent way
for studying perturbations of identification schemeswhich becomes relevant, among other things, for the
specification of vector autoregressions with time-varying covariance matrices.
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1. Introduction

Structural vector autoregressive (SVAR) models have estab-
lished themselves as an indispensable tool in empirical macroeco-
nomics. While these models capture reasonably well the dynamic
properties of the data, their economic interpretation in terms of
structural shocks is discussed controversially because these mod-
els suffer from a fundamental identification problem. This prob-
lem is addressed by imposing some restrictions (short-run, long-
run, sign restrictions, etc.) which are more or less funded in a pri-
ori economic reasoning. The econometric aspects of the identifica-
tion problemhas been analyzed by Rubio-Ramírez et al. (2010) and
Waggoner and Zha (2003) in the spirit of Rothenberg (1971).

We view the identification problem as an invariance property
of the group of orthogonal matrices on the set of observationally
equivalent identification schemes. While already anticipated in
the previously mentioned papers, following this route rigorously
presents several advantages. First, the identification problem is
given a precise mathematical framework. In this framework, the
invariance principle naturally leads to the use of the normalized
Haar measure as an uninformative prior (Jaynes, 1968). Second, it
allows the derivation of the joint distribution of the impact effects
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and not just of a single coefficient as in Baumeister and Hamilton
(2015, Section 3). Third, the action of the group allows to conceive
a kind of perturbation analysis of the identification scheme. This
is not only interesting in itself, but can be used to formulate time-
varying covariance matrices in a coherent way.

2. Structural vector autoregressive models

Consider a vector autoregressive (VAR) processes {Xt} with
observations in the state space Rn and defined as the stationary
solution of the stochastic difference equations of order p with
constant coefficients Φ1, . . . , Φp:

Xt = Φ1Xt−1 + · · · + ΦpXt−p + Zt , Zt ∼ WN(0, Σ), (2.1)

where Σ is symmetric and positive definite. The reduced form
shocks Zt are obtained from the structural shocks {Vt} by a linear
weighting scheme

Zt = B′Vt , Vt ∼ WN(0, In), (2.2)

where the n× nmatrix B is left unrestricted. The uncorrelatedness
assumption of the structural shocks is very much accepted in
the literature. Otherwise, there would remain some unexplained
relationship between them. The assumption that the structural
shocks have a covariance matrix equal to the identity is just a
convenient normalization.

http://dx.doi.org/10.1016/j.econlet.2016.05.003
0165-1765/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.econlet.2016.05.003
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2016.05.003&domain=pdf
mailto:klaus.neusser@vwi.unibe.ch
http://dx.doi.org/10.1016/j.econlet.2016.05.003


108 K. Neusser / Economics Letters 144 (2016) 107–111

Although this is not necessary for the discussion, it will be
assumed that {Xt} admits a causal representation with respect to
{Zt}. Thus, there exists a sequence ofmatrices {Ψj}, j = 0, 1, 2, . . . ,
with Ψ0 = In and


∞

j=0 ∥Ψj∥ < ∞ such that

Xt = Ψ0Zt + Ψ1Zt−1 + Ψ2Zt−2 + · · · =

∞
j=0

ΨjZt−j = Ψ (L)Zt (2.3)

= Ψ0B′Vt + Ψ1B′Vt−1 + Ψ2B′Vt−2 + · · ·

=

∞
j=0

ΨjB′Vt−j = Ψ (L)B′Vt . (2.4)

Such a causal representation of Xt in terms of current and past Zt ’s
exists if and only if det(In−Φ1z−Φ2z2−· · ·−Φpzp) = detΦ(z) ≠

0 for all z ∈ Cwith |z| ≤ 1.
While the VAR, usually, gives a good summary of the data, at

least up to the second moments, it is just a preliminary first step
in the analysis. The second and more controversial step aims at
identifying the structural shocks {Vt} and their effects on Xt+j, j =

0, 1, 2, . . . These effects are propagated over time and captured
by the sequence {ΨjB′

}, j = 0, 1, 2, . . . , known as the impulse
response function. The shocks and their propagation are usually
given an economic interpretation and are at the core of the SVAR
approach.

Relying on second moments only or assuming a Gaussian
framework, it is easy to see that the simultaneous equation system
(2.2) is not identified, i.e. it is impossible to extract B just from the
knowledge of Zt alone.2 Indeed, taking the symmetry of covariance
matrices into account, the nonlinear equation system

Σ = E(ZtZ ′

t ) = E(B′VtV ′

tB) = B′B (2.5)

delivers only n(n + 1)/2 independent equations for n2 unknown
coefficients in B. Thus, there is a need of n2

− n(n + 1)/2 =

n(n − 1)/2 additional equations. A customary solution to the
underidentification problem is to place enough restrictions on the
matrixB so that the equation system (2.5) admits a unique solution.
We call these identifying restrictions an identification scheme.

One popular form of restrictions is to set some coefficients
a priori to zero. These, so-called, short-run restrictions have to
come from either additional, usually theoretical, reasoning or
other a priori reasoning and are subject to controversy. Another
common way to place restrictions on B is to assume that the
cumulated effects of some particular shocks on some variable
equals zero. Thus, these so-called long-run restrictions impose
zeros on Ψ (1)B. Obviously, short- and long-run restriction do not
exclude each other, but can complement each other. As the gap
between equations and unknowns grows quadratically, it becomes
more and more difficult to incorporate reasonable restrictions as
the dimension n of the VAR increases.3

3. An algebraic interpretation of the identification problem

3.1. The group action of orthogonal matrices

One aim of this paper is to provide a deeper conceptual
framework which in the end should allow a better understanding
of the fundamental identification problem and of the solution
techniques proposed in this context.

Before presenting some results it is necessary to introduce some
algebraic and topological notions. Let Mn be the vector space of

2 In a non-Gaussian framework, it is conceivable to rely on higher moments.
3 An early example of how difficult this can be, is given by the five-dimensional

VAR analyzed by Blanchard (1989).

n × n matrices with real entries. It is clear that to any matrix
A = Aij ∈ Mn we can associate a point in Rn2 and hence identify
the vector spaceMn withRn2 . In thisway,Mn can be equippedwith
the Euclidian metric of Rn2 . With respect to this metric, the usual
matrix operations are continuous and even smooth.4 Since det A is
a continuous function from Mn to R, the set of invertible matrices
is an open subset of Mn which forms a group with respect to the
matrix multiplication. This group is called the general linear group
and denoted by GLn.

In the following, the subgroup of orthogonal matrices On,
i.e. matrices Q with the property Q ′Q = In, will be of special in-
terest. It can be shown that On is a compact (closed and bounded)
subgroup of GLn.5 This implies that On has a finite Haar measure
(see Diestel and Spalsbury, 2014, Chapter 5). This measure can be
normalized to make it a probability distribution.6

This distribution can be efficiently implemented numerically
by applying the QR-decomposition to a random matrix A with law
L(A) = N(0, In⊗ In), i.e. the elements of A are i.i.d.N(0, 1) random
variables (see Birkhoff and Gulati, 1979; Stewart, 1980; Edelman
and Raj Rao, 2005, for details).

In Section 3.2, we derive an analytic expression for the density
of subblocks of the normalizedHaarmeasure onOn. This resultwill
then be used to derive a corresponding result for the identification
schemes. For this purpose, we define the set of conceivable
identification schemes, called the set of structural factorizations,
and an action of On on this set.

Definition 1. For any given positive definite symmetric matrix Σ ,
the set

B(Σ) = {B ∈ GLn : Σ = B′B}

is called the set of feasible structural factorizations of Σ .

This set is nonempty because every positive definite symmetric
matrix admits a unique Cholesky factor R such that Σ = R′R with
R being an upper-triangular matrix with positive diagonal entries
(see, for example, Meyer, 2000, 154–155). Clearly, any B1, B2 ∈

B(Σ),B1 ≠ B2, are observationally equivalentwith respect to {Zt}.7

Proposition 1. B(Σ) is compact in Mn.

Proof. Consider the function F(B) = B′B − Σ . Because the usual
matrix operations are continuous and the set consisting just of the
zero matrix is closed, F−1({0}) = B(Σ) is closed. Moreover,
n

j=1

BijBij = Σii > 0

implies that ∥B∥ :=

n
i,j B

2
ij =

n
i=1 Σii. Thus, the set B(Σ) is

bounded. �

Consider the following map:

On × B(Σ) → B(Σ) : (Q , B) = QB.

Note it is well-defined because QB ∈ B(Σ) as B′Q ′QB = B′B = Σ

and continuous, in fact even smooth. Moreover, the map satisfies:

4 A function is called smooth if it is infinitely differentiable.
5 This is proven in Proposition 1 if Σ is set to In .
6 The normalized Haar measure is unique and is the analogue to the uniform

distribution on the real line. Denote the normalized Haar measure by µ, then in the
case of orthogonal matrices we must have µ(On) = 1, and µ(QQ) = µ(QQ ) =

µ(Q) for every measurable set Q ⊆ On and every Q ∈ On .
7 In the terminology of Dufour and Hsiao (2008) B(Σ) is called a model and its

elements structures.
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