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• We investigate endogeneity issues in the zero-inefficiency stochastic frontier.
• Parameters of the model are estimated using a modified LIML approach.
• Prediction of firm specific inefficiency score is also provided.
• The model is extended to allow for all errors to be potentially correlated.
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a b s t r a c t

In this paper, we investigate endogeneity issues in the zero-inefficiency stochastic frontier (ZISF) models
by mean of simultaneous equation setting. Specifically, we allow for one or more regressors to be
correlatedwith the statistical noise. Amodified limited informationmaximum likelihood (LIML) approach
is used to estimate the parameters of the model. Moreover, the firm specific inefficiency score is also
provided. Limited Monte Carlo simulations show that the proposed estimators perform well in finite
sample.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The so-called ‘‘zero-inefficiency stochastic frontier’’ (ZISF)
model proposed by Kumbhakar et al. (2013) and Rho and Schmidt
(2015) allows for some firms in a typical sample to be fully efficient
with a certain probability, a fact thatwe cannot preclude priori. Un-
der standard assumptions on the composed errors, they suggest a
maximum likelihood (ML) estimation procedure of themodel’s pa-
rameters as well as how to predict firm specific inefficiency. How-
ever, in their models, they assumed that all the regressors (or in-
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puts, in the production frontier setting) are exogenouswith respect
to the statistical noise and inefficiency. In practice, this assumption
might not be valid in some situations and consequently, invalidate
the consistency of ML estimator and the estimates of firm specific
inefficiency can be misleading. In this paper, we will relax this as-
sumption and allow for one or more regressors to be correlated
with the statistical noise in the composed error term; that is, we
will investigate the case that onemore of the regressors is endoge-
nous, in the sense of simultaneous equation context.

In the standard stochastic frontier setting, the issues of endo-
geneity have recently been addressed by Amsler et al. (2016a,b),
Tran and Tsionas (2013, 2015) and Kutlu (2010). However, to the
best of our knowledge, it does not appear that the endogene-
ity problem has been considered in the ZISF setting. The plan of
the paper is as follows. Section 2 introduces the ZISF model with
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endogeneity and discusses various assumptions as well as iden-
tification issues. Section 3 derives the limited information maxi-
mum likelihood (LIML) procedure as well as firm specific ineffi-
ciency predictor. Limited Monte Carlo simulations are presented
in Section 4 to examine the finite sample performance of the pro-
posed methods. Section 5 extends the model to allow for one or
more inputs to be correlated with both statistical noise and ineffi-
ciency. Section 6 concludes the paper.

2. The model

Consider the following Zero-Inefficiency Stochastic Frontier
model with endogenous inputs:

yi =


z ′

1iα + x′

iβ + vi with probability p(wi)

z ′

1iα + x′

iβ + vi − ui with probability 1 − p(wi)
(1)

and

xi = Z2iδ + ei, (2)

where yi is a scalar representing output of firm i, zi is a q1×1 vector
of exogenous inputs, xi is a d × 1 vector of endogenous inputs,
vi is random noise, ui is one-sided random variable representing
technical inefficiency, p(.) is a known function representing the
proportion of firms that are fully efficient and wi is a k × 1 vector
of covariates which influence whether a firm is inefficient or not;
Z2i = Id ⊗ z ′

2i where z2i is a q2 × 1 vector of exogenous instrument
variables, and ei is a d× 1 vector of two-sided random error terms
which we assume that ei ∼ N(0, Ωee) where Ωee is a d × d
covariance matrix. Following standard practice, we assume vi ∼

N(0, σ 2
v ), ui ∼

N(0, σ 2
u )

, ui is independent of ηi = (vi, ei)′ and

condition on Zi = (z1i, z2i)′, ηi ∼ N(0, Ω) where Ω =


σ 2
v Ωve

Ωev Ωee


,

so that the endogeneity is due to the correlation between vi and
ei. For more general case where ei is allowed to be correlated
with both vi and ui, see Section 4 below. Also, to ensure that
p(wi) ∈ [0, 1], we assume p(wi) takes a logistic function, p(wi) =
exp(w′

iγ )

1+exp(w′
iγ )

. Finally, for identification purpose, we assume that σ 2
u >

0 and q2 ≥ d (so that there are at least as many instruments as x’s).

3. LIML procedure

To obtain the likelihood function, we follow density decompo-
sition of Amsler et al. (2016a) approach, albeit one can also use
Cholesky’s decomposition approach as suggested in Kutlu (2010)
and Tran and Tsionas (2013). Let εi = vi − ui = yi − z ′

1iα − x′

iβ ,
ε̃i = εi − µci where µci = ΩveΩ

−1
ee ei with ei = xi − Ziδ and

σ 2
c = σ 2

v − ΩveΩ
−1
ee Ωev . Next, since ui is independent of vi and

ei, we have:

fu,v,e(u, v, e) = p(w)fv,e(v, e) + {1 − p(w)}fu(u)fv,e(v, e)
= p(w)fv|e(v)fe(e) + {1 − p(w)}fu(u)fv|e(v)fe(e)

= fe(e){p(w)fv|e(v) + (1 − p(w))fu(u)fv|e(v)}, (3)

where fe(e) = const × |Ωee|
−1

× exp(− 1
2 e

′Ω−1
ee e) and the distri-

bution of v | e is N(µc, σ
2
c ). Consequently,

fε,e(ε, e) =


∞

0
fu,v,e(u, ε + u, e)du = fe(e)


∞

0
fv|e(ε + u)du. (4)

By making use of change in variables, ε̃ = ε − µc and using the
result in Aigner et al. (1977), the density of ε̃ | e can be shown to be

fε̃|e(ε̃) =
2
σ

φ


ε̃

σ


Φ


−λε̃

σ


, (5)

whereσ 2
= σ 2

u +σ 2
c = σ 2

u +σ 2
v −ΩveΩ

−1
ee Ωev ,λ =

σu
σc

andφ(.) and
Φ(.) are respectively the standard normal density and cdf. Thus, by
writing ε = ε̃ + µc , we obtain:

fε,e(ε, e) =


p(w)(2πσ 2

c )−1/2 exp


−
1

2σ 2
c
(v − µc)

2


+ (1 − p(w))σ−1φ


ε − µc

σc


Φ


−λ(ε − µc)

σc


× (2π)−1Ω−1/2

ee exp


−
1
2
e′Ω−1

ee e


. (6)

Then the log-likelihood function is:

ln L = ln L1 + ln L2 (7a)

where

ln L1 =

n
i=1

ln

p(wi)(2πσ 2

c )−1/2

× exp


−
1

2σ 2
c
(yi − z ′

1iα − x′

iβ − µic)
2


+ [1 − p(wi)]σ
−1φ


yi − z ′

1iα − x′

iβ − µic

σc


× Φ


−λ(yi − z ′

1iα − x′

iβ − µic)

σc


(7b)

and

ln L2 = −
n
2
ln |Ωee| −

1
2

n
i=1

(xi − Z2iδ)′Ω−1
ee (xi − Z2iδ). (7c)

Note that, in a special case where p(.) = 0, (7a) reduces to the
log-likelihood function of the standard SFmodelswith endogenous
regressors (e.g., Kutlu, 2010; Tran and Tsionas, 2013; and Amsler
et al., 2016a). On the other hand, when p(.) = 1, it reduces to the
log-likelihood function of simultaneous regressionmodels. Finally,
when there are no endogenous regressors, (i.e.,Ωve = 0) it reduces
to the case of ZISF models of Kumbhakar et al. (2013) and Rho and
Schmidt (2015).

Now by maximizing the log-likelihood function in (7a) directly
with respect to the parameters θ = (α, β, σ 2

v , σ 2
u , δ, Ωve, Ωee, γ ),

we can obtain the LIML estimates. Or alternatively, we can use
Generalized Method of Moment (GMM) approach of Tran and
Tsionas (2013) which uses the moment conditions that are based
on the score of the log-likelihood function. This GMM procedure is
similar to the direct MLE. Finally, a control function type two-step
procedure suggested by Kutlu (2010) can also be used. To construct
a two-step procedure, let θ1 = (α, β, σ 2

v , σ 2
u , Ωve, γ ) and θ2 =

(δ, Ωee). Then in the first step, we maximize (7c) with respect to
θ2, and this is essentially the least square estimation of x on Z from
the reduced form equations to obtain δ̂ and Ω̂ee = n−1 n

i=1(Xi −

Z ′

i δ̂)(Xi − Z ′

i δ̂)
′. In the second step, given the estimates of θ̂2, we

maximize (7b) to obtain the remaining parameters θ1. Note that,
unlike the direct MLE or GMM procedure, this two-step procedure
is generally inefficient because it ignores the information about
θ2 in (7b) and treating as though it is known. Consequently, a
practical implication is that the conventional estimated standard
errors from step 2 are not correct, and they need to be adjusted
to reflect the fact that θ2 have been estimated. One simple way
to mitigate this problem is to use bootstrapping procedure. Or
alternatively, one could follow Wooldridge (2010, Section 12.4.2)
to construct the correct standard errors analytically.
Prediction of firm specific inefficiency:

Once the parameters of the model have been estimated, we can
use (Jondrow et al., 1982) procedure to construct the estimate for
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