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h i g h l i g h t s

• A quantile nonlinear cointegration model is proposed.
• The parameter estimator follows a nonstandard distribution asymptotically.
• A fully modified estimator and a test for linearity are developed.
• Monte Carlo results show that the test has good finite sample performance.
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a b s t r a c t

In order to investigate the nonlinear relationship among economic variables at each quantile level, this
paper proposes a quantile nonlinear cointegration model in which the nonlinear relationship at each
quantile level is approximated by a polynomial. The parameter estimator in the proposed model is
shown to follow a nonstandard distribution asymptotically due to serial correlation and endogeneity.
Therefore, this paper develops a fully modified estimator which follows a mixture normal distribution
asymptotically. Moreover, a test statistic for the linearity and its asymptotic distribution are also derived.
Monte Carlo results show that the proposed test has good finite sample performance.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that financial time series are leptokurtic and
heavy tailed. While traditional time series models and approaches
are no longer suitable for heavy tailed time series, much effort has
been devoted to the time series quantile regression.1 For stationary
time series, Koenker and Xiao (2006) put forward a linear quantile
autoregressive model, Chen et al. (2009) proposed a copula-based
nonlinear quantile autoregressive model, and Galvao et al. (2010)
developed a threshold quantile autoregressive model. Moreover,
So and Chung (2015) examined the statistical properties of a
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two-step conditional quantile estimator in nonlinear time series
models. In addition, Xiao and Koenker (2009) investigated the
quantile regression estimation for the generalized autoregressive
conditional heteroscedasticity (GARCH) model. For nonstationary
time series, Koenker andXiao (2004) developed the unit root quan-
tile autoregression inference, and then was extended by Galvao
(2009) to allow stationary covariates and a linear time trend. Li
and Park (forthcoming) proposed a quantile nonlinear unit root
test. More importantly, Xiao (2009) developed quantile cointegra-
tion models which have been widely used in finance and eco-
nomics. Cho et al. (2015) extended Xiao’s (2009) study and ana-
lyzed short-run dynamics and long-run cointegrating relationships
across a range of quantiles by proposing a quantile autoregressive
distributed lag model. Though the quantile cointegration model
enables us to examine the quantile dependent cointegrating rela-
tionship among economic variables, it still assumes that the coin-
tegrating relationship at each quantile level is linear and no one
extended it to the nonlinear cointegrating framework. As Granger
and Teräsvirta (1993) pointed out, however, ‘‘it was well known
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that relationships betweenmajor economic variables were nonlin-
ear and that nonlinear models abound in economic theory.’’ More-
over, Hong and Phillips (2010) argued that neglecting the possi-
ble nonlinearity among nonstationary variables could lead tomore
serious consequences. Therefore, this paper extends Xiao’s (2009)
study to the nonlinear cointegrating framework.

To the best of our knowledge, this paper is the first to study
the estimation and test for the quantile nonlinear cointegration
even there is a vast literature on nonlinear cointegration, see Park
and Phillips (1999), and Saikkonen and Choi (2004). Similar to
Hong and Phillips (2010), we approximate the nonlinear function
in each quantile level by a polynomial. For this reason, this paper
also extends the polynomial cointegrating regression of Hong and
Phillips (2010) to the quantile regressive framework. Even though
polynomials can be used to approximate more general nonlinear
functions well, it is restrictive in some sense. However, by the
polynomial approximation, the model is linear in parameters after
transforming so that linear quantile regression could be used to
obtain the estimation, and therefore, we do not have to resort to
the nonlinear optimization. In addition, we assume that regressors
are endogenous and residuals are serially correlated. Therefore,
a fully modified estimator is show to follow a mixture normal
distribution asymptotically. Moreover, a test statistic is developed
to test linearity in the proposed quantile cointegrating regression
and its asymptotic distribution is derived. Monte Carlo results
shows that our proposed test has good finite sample performance.

The quantile nonlinear cointegration models could be widely
used in economics and finance. For example, it could be used
to examine the relationship between the spot and futures prices
and the interaction among financial markets. For example, by
using Xiao’s (2009) quantile cointegration model, Lee and Zeng
(2011) investigated the relationship between the spot and futures
oil prices of West Texas Intermediate and Burdekin and Siklos
(2012) analyzed the contagion between Chinese, US and Asia-
Pacific equity markets. However, it is hard to believe that the
relationship between the spot and futures prices at each quantile
level is linear. Moreover, it is also unrealistic to assume that the
contagion effect among financial markets is linear. Therefore, the
newly proposed nonlinear cointegration model could be used to
provide more convincing analysis for these issues.

2. Quantile nonlinear cointegration and asymptotic properties

Xiao (2009) first developed the quantile cointegration model.
Following Xiao (2009), we consider the following varying coeffi-
cient cointegration model:

yt = α + β ′

txt + µt , (1)

where βt is a monotone function of the innovation process. Let
Fµ(·) be the cumulative distribution function (c.d.f.) of µt , then
Model (1) can be written as

Qyt (τ |xt) = α + β(τ)′xt + F−1
µ (τ ), (2)

where, xt = (x1t , x2t , . . . , xkt)′ is a k-dimensional vector of
integrated variables, Qyt (τ |xt) is the τ th conditional quantile of
yt , β(τ ) is a vector of parameters and may vary over the quantile
levels. Model (2) assumes that the relationship between {yt}
and {xt} is linear at each quantile level. Thus, it cannot capture
the nonlinear relationship among variables. Therefore, we extend
Xiao’s (2009) model to the nonlinear framework:

Qyt (τ |xt) = g(xt , γ (τ ))+ F−1
µ (τ ), (3)

where g(·, ·) is a known nonlinear function and γ (τ) is a vector of
parameters that may vary over the quantile levels. If g(·, ·) takes
the form of smooth transition function, Model (3) includes the

quantile smooth transition cointegrating model as its special case.
However, Model (3) is such a general framework that it is quite
hard to obtain the asymptotic properties if it is not impossible.
Moreover, it is also hard to construct a test for linearity under the
framework of Model (3).

Following Hong and Phillips (2010), we approximate g(·, ·)
by a polynomial and obtain a quantile polynomial cointegrating
regressive model:

Qyt (τ |xt) = α + β(τ)′xt +

p
j=2

γj(τ )
′xjt + F−1

µ (τ ), (4)

where xjt = (xj1t , x
j
2t , . . . , x

j
kt)

′, j = 2, 3, . . . , p. Let zt = (1, x′
t , x

2
t
′

. . . xpt
′
)′, θ(τ ) = (α(τ), β(τ )′, γ (τ )′)′, γ = (γ ′

2(τ ), γ
′

3(τ ), . . . ,
γ ′
p(τ ))

′, γj(τ ) is a k-dimensional vector of parameters that may
vary over the quantile levels, α(τ) = (α + F−1

µ (τ )), then the
estimator θ̂ (τ ) can be obtained by the following minimization
problem:

θ̂ (τ ) = argmin
θ

T
t=1

ρτ (yt − θ ′(τ )zt). (5)

Note that all parameters in Model (4) are quantile dependent.
To obtain feasible estimators, the polynomial order p should
be chosen in advance. On one hand, bigger p can approximate
the g(·, ·) well. On the other hand, bigger p will increase the
parameters estimated and reduce the degrees of freedom, and
might cause spurious nonlinearity (Hong and Phillips, 2010).
While some information criterions, such as AIC and BIC, could be
employed to choose the polynomial order p, Hong and Phillips
(2010) suggested p = 2 or 3 for which the Monte Carlo simulation
gives better finite sample performance.

To develop the asymptotic theory, we impose the following
assumptions.

Assumption 1. Let vt = (v1t , v2t . . . vkt)
′

= 1xt and µt be
generated by

vt = Cv(L)ε =

∞
i=0

cviεt−i, µt = Cu(L)η =

∞
j=0

cujηt−j,

where
∞
i=0

i|cvi| < ∞,

∞
j=0

j|cuj| < ∞, det((Cv(1))) ≠ 0.

The vector process ξt = (ε′
t , ηt)

′ is a stationary and ergodic
martingale difference sequence with natural filtration Ft =

σ({ξs}
t
−∞
) satisfying that

(1) E(ξtξ ′

t |Ft−1) > 0,
(2) supt≥1E(∥ξt∥r

|Ft−1) < ∞, a.s. for some r > 4.

Assumption 2. The disturbance µt is identically distributed with
common c.d.f. F(µ), and has a continuous density f (µ) with
f (µ) > 0 on {µ : 0 < f (µ) < 1}.

Assumption 3. The conditional distribution function Ft−1(µ) =

P(µt < u|Ft−1) has derivative ft−1(·), a.s., and ft−1(sn) is
uniformly integrable for any sequence sn → F−1(τ ). For some
δ > 1, E[f δt−1(F

−1(τ ))] < ∞.

Assumption 1 is standard in nonlinear cointegration time series
analysis and is needed for the establishment of the multivariate
invariance principle. Similar assumption can also be found in Hong
and Phillips (2010). Assumptions 2 and 3 are also quite standard in
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