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a b s t r a c t

The past two decades witnessed a prosperous literature on model averaging, however, few authors
have examined model averaging under high-dimensional data setting. An exception is Ando and Li
(2014), which proposed a model averaging procedure to improve prediction accuracy under high-
dimensional independent data setting. In this paper, we broaden Ando and Li’s scope of analysis to allow
dependent data. We show that under the dependent data setting, their model averaging estimator is still
asymptotically optimal. Simulation study demonstrates the finite sample performance of the estimator
in a variety of dependent data settings.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past two decades, model averaging has been well de-
veloped. Contributions to model averaging come from differ-
ent data settings, such as independent and homoskedastic set-
ting (Hansen, 2007; Zhang et al., 2015; Zhao, 2014), independent
and heteroskedastic setting (Hansen and Racine, 2012; Liu and
Okui, 2013; Magnus et al., 2011; Zhao et al., 2016), dependent set-
ting (Gao et al., 2016; Zhang et al., 2013), censoring data (Hjort and
Claeskens, 2006; Zhang et al., 2012), and missing data (Schomaker
et al., 2010; Zhang, 2013). However, in high dimension situation,
almost all methods developed in these papers will be infeasible
from computational perspective because theoretically there are 2p

candidate models where p is the number of regressors. When p is
20, 2p will be above one million.

Recently, Ando and Li (2014) developed amodel averaging pro-
cedure using Jackknifemodel averaging (JMA) proposed byHansen
and Racine (2012). The marginal correlation between each pre-
dictor and the response variable was used to partition predictors
into several groups and then they used these groups to prepare
candidate models and chose the weight vector by minimizing a
cross-validation criterion. Without requiring the weights sum to
one, they proved the asymptotic optimality of their procedure.
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Simulation results show that the procedure performs much better
than the existing model selection and averaging methods. But
in Ando and Li (2014), the data observations are requested to be
independent.

In the current paper, we further investigate the procedure
of Ando and Li (2014) under dependent data setting.We show that
under this setting, their model averaging estimator is still asymp-
totically optimal and has promising finite sample performances.

2. Model and estimation

We follow Ando and Li (2014) notations as much as possible for
readers’ convenience and consider the multiple linear regression
model

y =

p∑
j=1

βjxj + ϵ, (1)

where y is the response variable, x1, . . . , xp are explanatory vari-
ables, p is allowed to increase with the sample size n and even
larger than n, and the random error term ϵ has mean E[ϵ] = 0
and var[ϵ] = Σ . In Ando and Li (2014), Σ is only allowed to be a
diagonal matrix, but here we allowΣ to be a general non-negative
definite matrix, i.e., we consider both potentially heteroscedastic-
ity and serial correlation in the random error term.

Following Ando and Li (2014), we prepare candidate models
using the marginal correlation between each explanatory variable
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Fig. 1. Simulation results: MSE with n = 50.

and the response variable.We partition the pmarginal correlations
into M + 1 groups by the absolute values of the marginal correla-
tion. The first group has the highest values and theM+1 group has
values closest to zero. We drop theM + 1 group. Thus the number
of models isM .

Let model Mk consist of the regressors with marginal correla-
tions falling into the kth group. Denote the kth candidate model
as

y =

∑
j∈Ak

βjxj + ϵ, k = 1, . . . ,M (2)

where Ak is the index set of regressors to be included in modelMk.
Denote Xk as the regressor matrix and βk as the pk-dimensional
parameter vector under model Mk. Let µ = E(y). We assume
pk ≤ n and Xk has full column rank. Using least square estima-
tion, β̂k = (X ′

kXk)−1X ′

ky and the least squares prediction µ̂k =

Xkβ̂k. Denote the projection matrix Xk(X ′

kXk)−1X ′

k by Hk. Let the M-
dimensional weight vector w = (w1, . . . , wM )′ come from Qn ={
w ∈ [0, 1]M : 0 ≤ wk ≤ 1

}
. Themodel average predictorµ can be

written as

µ̂(w) =

M∑
k=1

wkµ̂k =

M∑
k=1

wkXk(X ′

kXk)−1X ′

ky

=

M∑
k=1

wkHky = H(w)y, (3)

where H(w) =
∑M

k=1wkHk. Note that the restriction
∑M

k=1wk = 1
is unnecessary in this paper.

We estimate the weights using the delete-one cross-validation
approach (i.e., JMA) as used in Hansen and Racine (2012). Let µ̃(−α)

k
be the predicted value of the αth observation from model Mk and
µ̃k = (µ̃(−1)

k , . . . , µ̃
(−n)
k )′. Then, we can write µ̃k = H̃ky, where

H̃k = Dk(Hk − I)+ I , Dk = diag
{
(1 − hk1)−1, . . . , (1 − hkn)−1

}
, and

hkα is the αth diagonal element of Hk. Then the delete-one model
averaging predictor of µ is

µ̃(w) =

M∑
k=1

wkµ̃k =

M∑
k=1

wkH̃ky = H̃(w)y, (4)

where H̃(w) =
∑M

k=1wkH̃k. The cross-validation criterion is
CV (w) = ∥y − µ̃(w)∥2. We select the weight vector w as

ŵ = arg min
w∈Qn

CV (w). (5)

Next, we show the asymptotic optimality of ŵ with a possibly
non-diagonal Σ . Let L(w) = ∥µ̂(w) − µ∥

2, R(w) = E {L(w)},
ζn = infw∈QnR(w), and λ̄(Υ ) andλ(Υ ) denote themaximal diagonal
element and the maximal singular value of matrix Υ , respectively.
All limiting processes discussed in this and subsequent sections are
as n → ∞. We need the following regularity conditions.

Condition (C.1). maxk=1,...,M p−1
k λ̄(Hk) = O(n−1).

Condition (C.2). ∥µ∥
2

= O(n).

Condition (C.3). λ(Σ) = O(1).

Condition (C.4). M3ζ−2
n n = o(1) and M2ζ−1

n maxk=1,...,M pk = o(1).
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