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h i g h l i g h t s

• We implement Composite Marginal Likelihood (CML) for spatial probit models.
• Existing CML implementations are infeasible in large samples.
• We achieve computational feasibility using sparse matrix techniques.
• We illustrate feasibility of our CML implementation through a Monte-Carlo study.
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a b s t r a c t

Composite Marginal Likelihood (CML) has become a popular approach for estimating spatial probit
models. However, for spatial autoregressive specifications the existing brute-force implementations are
infeasible in large samples as they rely on inverting the high-dimensional precision matrix of the latent
state variable. The contribution of this paper is to provide a CML implementation that circumvents
inversion of that matrix and therefore can also be applied to very large sample sizes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Composite Marginal Likelihood (CML) has become a popular
technique for estimating spatial probit models. It has been
introduced to the analysis of spatial binary data by Heagerty and
Lele (1998) in the field of geostatistics while Bhat et al. (2010)
were the first to apply CML in the area of spatial econometrics.
The Partial Maximum Likelihood approach of Wang et al. (2013)
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is equivalent to CML. For a comprehensive overview on CML see
Bhat (2014).

Relative to standard Maximum Likelihood (ML) the CML ap-
proach has the advantage of avoiding high-dimensional numerical
integration. However, for spatial autoregressive specifications the
existing brute-force implementations of CML rely on inverting the
precision matrix of the latent state variable. Since that matrix has
dimensions equal to the number of observations n brute-force CML
is infeasible in large samples (Billé, 2013).

The contribution of this paper is to provide a CML implementa-
tion that avoids computation of the full inverse matrix. Instead we
compute only those elements of the inverse matrix that are actu-
ally required by CML. We do so by exploiting a recursion formula
derived by Takahashi et al. (1973). Sparse matrix techniques allow
us to apply it even for large nwith low computational costs so that
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CMLbecomes feasible in large samples. Originally the recursionhas
been introduced to the Bayesian spatial statistic context by Rue and
Martino (2007). However, its potential for CML has not been rec-
ognized so far by the spatial econometrics literature.

2. Spatial probit models

Spatial probit models are defined as follows. Let yi denote a
binary dependent variable observed for spatial unit i:

yi =


1, if y∗

i ≥ 0 ,
0, else i = 1, . . . , n. (1)

The factor y∗

i denotes a latent state variable following a linear
spatial model of the form

y∗
= m + u, u ∼ N(0,H−1), (2)

where y∗
= (y∗

1, . . . , y
∗
n)

′ denotes the state vector with meanm =

(m1, . . . ,mn)
′ and u = (u1, . . . , un)

′ is a vector of Gaussian errors
with precision matrix H . For spatial autoregressive specifications

H = (I − ρW )′(I − ρW ), (3)

where I labels an (n × n) identity matrix, ρ denotes a correlation
parameter and W = (wij) is an (n × n) matrix of spatial weights
wij. In typical applicationsW consists of a large proportion of zero
entries so thatW and H are sparse matrices.

We consider two specifications for m. The first leads to the
Spatial Autoregressive Lagged dependent variable (SAL)model, the
second to the Spatial Autoregressive Error (SAE) model. Thus, the
mean is given as

SAL: m = (I − ρW )−1Xβ (4)
SAE:m = Xβ, (5)

where the (n × ℓ) matrix X denotes exogenous variables and β is
an ℓ-dimensional vector of slope parameters.

3. Composite marginal likelihood

Evaluating the likelihood of spatial probit models amounts
to numerical integration over the n-dimensional interdependent
state vector u, which is computationally demanding for large n.
The idea underlying CML is to avoid high-dimensional integration
by dividing the spatial units into groups and then to account
for dependence within each group but to ignore dependence
between groups. Typically these groups are pairs of units. The
objective function to be maximized by CML then results as a
product of bivariate Gaussian cdfs which are amenable to standard
numerical integration. Larger group sizes of three or four spatial
units increase statistical efficiency but comeat the cost of increased
computational burden. In fact the pairwise approach has proven to
be a good balance between computational and statistical efficiency
(see also Bhat, 2014).

In total there are n(n − 1)/2 possibilities to create pairs from
n observations. Since spatial dependence decreases rapidly with
rising distance most correlation can be captured by accounting
only for pairs including nearby observations. Two spatial units i
and j are classified as nearby observations if the spatial weight
wij exceeds a threshold value. For further discussions including
computation of standard errors aswell as efficiency and robustness
of CML compared to ML see Bhat (2014).

The pairwise CML implementation divides the spatial units into
pairs indexed by g = 1, . . . ,G with the members of each pair g
denoted as g1 and g2. Furthermore define z = Qu and ν = −Qm,
where Q is a diagonal matrix with entries 1 − 2yi for i = 1, . . . , n.
The likelihood function is obtained as the joint probability P(z ≤

ν). The CML approach maximizes the product over the marginal
likelihoods associated to each pair:

LCML =

G
g=1

P(z(g) ≤ ν(g)) =

G
g=1

Φ2(ν(g); 0, Σg), (6)

where the (2 × 1) vector z(g) = (zg1, zg2)′ collects the elements
from z associated to pair g and ν(g) = (νg1, νg2)

′ denotes the
corresponding upper bound. Thus z(g) is bivariate Gaussian with
cdf Φ2(·) and covariance matrix Σg .

4. Computational issues

In principle Σg can be computed by extracting the correspond-
ing elements from Σ = Cov(z) = QH−1Q ′. However, inversion
of the (n × n) precision matrix H becomes prohibitively costly
for large samples (n = 50,000+) so that the existing brute-force
implementations of CML are infeasible. In order to overcome this
problem Billé (2013) proposes the use of sparse matrix meth-
ods to implement a computationally efficient power series expan-
sion of H−1. Nevertheless this approach is just an approximation
and furthermore is still costly for large n. Alternatively the sparse
conjugate gradient method Smirnov (2010) suggested for pseudo-
maximum likelihood estimation of a spatial random utility choice
model1 may be considered.

Fortunately, inverting H is actually not necessary since only a
subset of the elements in Σ is required. According to Takahashi
et al. (1973) single elements of the inverse of a positive-definite
matrix can be computed by using the following recursion. Let L
denote a lower triangular Cholesky factor such that LL′

= Σ−1
=

Q ′HQ . Then the element in row i and column j of Σ is given by:

Σij =
δij

L2ii
−

1
Lii

n
k=i+1

LkiΣkj, where j ≥ i, i = n → 1 (7)

and δij = 1 if i = j and δij = 0 otherwise.2
For computational efficiency it is critical that L is obtained

as a sparse matrix. In this case most of the terms in the sum
are zero and can therefore be ignored which greatly accelerates
computation time making the recursion feasible even in very
large samples. Although the precision matrix Q ′HQ is sparse this
does not translate directly into sparsity of its Cholesky factor L.
However, reordering the spatial units i = 1, . . . , n according to
a symmetric approximate minimum degree permutation of the
rows and columns of Q ′HQ reduces the ‘fill-in’ occurring during
computations resulting in a sparse L (see Rue and Martino, 2007
and Ch. 4 in LeSage and Pace, 2009).

5. Monte-Carlo study

In the following, we illustrate our computational efficient CML
implementation by conducting a Monte-Carlo study. We gener-
ate data sets with n = 50,000 spatial units. The spatial weight
matrix W is constructed by simulating a pair of coordinates
from a uniform (0, 1) distribution for each spatial unit. We con-
struct a row-standardized spatial weight matrix by means of
the MATLAB function fasymneighbors2 from the spatial statistics
toolbox by Robert Kelley Pace (http://www.spatial-statistics.com),
which – exploiting Delaunay triangulation – assigns exactly 6
neighbors to each spatial unit.

1 In thismodel the error termof each state variable follows a type 1 extreme value
distribution.
2 The study by Takahashi et al. (1973) may be difficult to access. For a detailed

discussion of recursion (7) we refer to Rue and Martino (2007).
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