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h i g h l i g h t s

• We show how probability forecasts can be ranked for different sets of events.
• This ranking generalizes the refinement ordering which is only applicable to identical sets of events.
• This ranking provides a partial ordering which is consistent with popular skill scores used in practice.

a r t i c l e i n f o

Article history:
Received 11 February 2016
Received in revised form
20 May 2016
Accepted 21 May 2016
Available online 27 May 2016

JEL classification:
C4
G2

Keywords:
Moody’s
S&P
Probability forecasts
Skill scores

a b s t r a c t

We generalize the refinement ordering for well calibrated probability forecasts to the case were the
debtors under consideration are not necessarily identical. This ordering is consistent with many well
known skill scores used in practice. We also add an illustration using default predictions made by the
leading rating agencies Moody’s and S&P.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Probability forecasting has a long tradition inmany fields of ap-
plication. In economics, the most popular ones are default predic-
tions in the rating industry. According to the Basel-II and Basel-III
accords for instance, banks have to attach predicted default prob-
abilities to all outstanding loans. Although major rating agencies
likeMoody’s or S&P are reluctant to identify their letter gradeswith
predicted default probabilities, we will stick to this probability in-
terpretation in what follows. Given two competing default predic-
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tors and the prevalence of split ratings in practice (see e.g. Hauck
and Neyer, 2014), it is then natural to ask: Which one is better?

One option is to rely on some scalar measures of performance
like the Brier Score. However, it is well known that different score
functions might produce conflicting results (see e.g. Krämer and
Güttler, 2008 for an example). The present paper therefore is con-
cerned with partial orderings which, if valid, will imply identical
rankings with respect to all members from some suitable class of
scoring functions. It extends (Krämer, 2006), which covers only
identical sets of debtors, to caseswhere the two debtors under con-
siderations are not necessarily identical. It is not concerned with
the equally important issue of how ratings are produced in the first
place (see Lahiri and Yang, 2013 for an overview or Czarnitzki and
Kraft, 2004 or Boumparis et al., 2015 for relevant discussions in the
present journal).

Section 2 below introduces a novel partial ordering based on
Generalized Lorenz curves and Section 3 provides an application
to ten-year default predictionsmade by the leading rating agencies
Moody’s and S&P.

http://dx.doi.org/10.1016/j.econlet.2016.05.021
0165-1765/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.econlet.2016.05.021
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2016.05.021&domain=pdf
mailto:walterk@statistik.tu-dortmund.de
mailto:simon.neumaerker@tu-dortmund.de
http://dx.doi.org/10.1016/j.econlet.2016.05.021


W. Krämer, S. Neumärker / Economics Letters 145 (2016) 48–51 49

2. Modified Lorenz dominance

Let 0 = a1 < a2 < · · · < ak = 1 be a finite set of
possible forecasts of default probabilities. Let qA(aj) be the relative
frequency with which the default probability aj is predicted by
forecaster A (similarly for B). This paperwill only consider forecasts
which are well calibrated, i.e. where

P(default |aj) = aj (j = 1, . . . , k). (1)

In addition, we will focus on theoretical distributions, i.e. we will
not distinguish between relative default frequencies and default
probabilities. Everything that follows will then depend only on the
vectors a := [a1, . . . , ak]′ and q := [q(a1), . . . , q(ak)]′.

For the special case where A and B are rating the same set
of debtors, DeGroot and Fienberg (1983) suggest the concept of
refinement to discriminate between the two. If, by applying a
randomization to the probability forecasts of A, one obtains a new
probability forecast with the same distribution as B, then A is
more refined than B. As shown by DeGroot and Eriksson (1985),
this amounts to Lorenz-domination of the respective forecast
distributions:

A≥L B ⇔
1
p
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, (0 ≤ x ≤ 1) (2)

where LA(x) and LB(x) are the respective Lorenz curves,

FA(a) :=


ai≤a

qA(ai) (3)

is A’s default forecast distribution and where

FA−1
(t) := inf{a : FA(a) ≥ t} (4)

is the inverse of A’s default forecast distribution (similarly for B).
The overall default probability can then be expressed as

p =

 1

0
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 1
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(t)dt (5)

which equals the expectation of both FA and F B. In view of
calibration, p =


aiqA(ai) =


aiqB(ai). This expectation could

as well be dropped in Eq. (2), as it appears on both sides of the
inequality, and mainly sees to it that both Lorenz curves end in
(1, 1).

Contrary to comparing income inequality, where Lorenz curves
close to the diagonal are ‘‘good’’ (i.e. signal a more equal
distribution of income), A is in the present application considered
better than B if its Lorenz curve bends farther away from the
diagonal, i.e. if its predicted default probabilities are more spread
out. This is why we here, other than in the income distribution
context, identify ‘‘domination’’ with a higher level of inequality.
It can also easily be shown that the same ordering obtains if the
ranking is based on predicted non-defaults: x
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for 0 ≤ x ≤ 1, where F̃(a) :=


ãi≤a q̃(ãi) is the distribution
function of the predicted survival probabilities ãi := 1 − ai and
q̃(ãi) := q(ai).

If A and B are rating different (possibly overlapping) sets of
debtors, the overall probability of default will in general differ
between the respective sets, and the refinement concept does no
longer apply. However, the Lorenz-ordering is still possible, by

replacing the overall default probability p = pA = pB in (2) with pA
and pB, where appropriate. Other than in the case pA = pB, it now
does matter whether we consider predicted default or predicted
survival probabilities: It can be shown by simple counterexamples
that A’s Lorenz curve for predicted default probabilities is better
and A’s Lorenz curve for predicted survival probabilities is worse
than that of B. Therefore the standard Lorenz order does not make
much sense for nonidentical sets of debtors. Here is an extension:

Definition. A dominates B in the modified Lorenz sense (A≥ML B)
ifA≥L B (i.e. (2) obtainswith pA and pB in place of p) and in addition,

0.5 ≥ pA ≥ pB (pB < 0.5) or
0.5 ≤ pA ≤ pB (pB > 0.5).

For pA = pB, this reduces to the standard refinement ordering.
Without loss of generality, we will confine ourselves to the
empirically more relevant case pB < 0.5 in what follows. The
inequality pA > pB then implies that the generalized Lorenz curve
(defined as p times standard Lorenz curve) of A is larger than
that of B towards the right end of the [0, 1]-interval. Intuitively,
this means that A′s predictions are both more spread out and on
average closer to 0.5 at the same time.

It is well known from the theory of proper scoring rules (see
e.g. Winkler, 1996) that it becomes harder to obtain good results
as the overall default probability approaches 0.5. The well known
Brier score for instance, given by

B(a, q) :=

k
i=1

q(ai)ai(1 − ai) (7)

whenever a forecaster is well calibrated, approaches its optimal
value of 0 even for the trivial forecast ai = p∀iwhenever p → 0 or
p → 1. And the trivial forecast is worst in the Brier sense if p = 0.5
(always assuming that p is among the available ai’s). Twoadditional
scoring rules often used in application are the logarithmic score

L(a, q) :=

k
i=1

q(ai) (ai ln(ai) + (1 − ai) ln(1 − ai))

(with 0 ln(0) := 0) (8)

and the spherical score

S(a, q) :=

k
i=1

q(ai)

a2i + (1 − ai)2, (9)

which are likewise producing good results for the trivial forecasts
as p → 0 or p → 1.

In order to compensate for this intrinsic difference in difficulty,
it is common to rely on skill scores rather than on ordinary scoring
rules whenever pA ≠ pB (see Lahiri and Yang, 2013 for additional
motivation). Given any scoring rule S(a, q), the corresponding skill
score is given by

SS(a, q) :=
S(a, q) − St
Sopt − St

(10)

where St is the trivial score obtained for ai = p ∀i and Sopt is the
optimal score where only q(0) and/or q(1) are different from zero
(Winkler, 1996). A skill score thenmeasures how close a forecaster
is to the optimum. It takes its maximum value of 1 if defaults and
non-defaults are both predicted with certainty; it takes the value
zero for the trivial forecast, and it can even take on values less than
zero if a forecaster is worse than the trivial forecast. For the Brier
score, for instance, we have

BS(a, q) =
B(a, q) − p(1 − p)

−p(1 − p)
. (11)
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