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h i g h l i g h t s

• We use an average estimator which depends on all candidate models to estimate the covariance matrix.
• We choose weight vectors in the model average estimators of coefficients and covariance matrix simultaneously by minimizing the weight choice

criterion.
• We prove the asymptotic optimality.
• Simulation experiments show that the proposed model averaging method is superior to its competitors.
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a b s t r a c t

This article studies optimalmodel averaging for linearmodelswith heteroscedasticity.We chooseweights
by minimizing Mallows-type criterion. Because the covariance matrix of random error in the criterion is
unknown, an averaging estimator of covariance matrix is plugged into the criterion. The resulting model
averaging estimator is proved to be asymptotically optimal under some regularity conditions. Simulation
experiments show that the proposed model averaging method is superior to its competitors.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, asymptotically optimal least square model av-
eraging methods have been actively developed. Hansen (2007),
Liang et al. (2011), Zhang et al. (2015) and Xie (2015) respec-
tively proposed Mallows model averaging, ‘‘OPT’’ model averag-
ing, model averaging based on Kullback–Leibler distance, and pre-
diction model averaging for combining least squared estimators
withhomoskedasticity. Hansen andRacine (2012) and Liu andOkui
(2013) respectively proposed Jackknifemodel averaging (JMA) and
Heteroskedasticity-Robust Cp (HRCp) model averaging for com-
bining least squared estimators with heteroskedasticity. All these
methods are asymptotically optimal in the sense that they mini-
mize predictive squared error in large sample case.

This article contributes literature on least squared model av-
eraging with heteroskedasticity. Similar to Mallows criterion of
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Hansen (2007), we use a weight choice criterion which is an un-
biased estimator of expected predictive squared error up to a con-
stant. But, in the weight choice criterion, the covariance matrix
of random errors is unknown. One may estimate the covariance
matrix based on a single candidate model, but this estimation is
somehow arbitrary, because we have many candidate models. In
the current paper, we use an average estimator which depends
on all candidate models to estimate the covariance matrix. Then,
we choose weight vectors in themodel average estimators of coef-
ficients and covariance matrix simultaneously by minimizing the
weight choice criterion. The resultingweight vector is proved to be
asymptotically optimal under some regularity conditions.We term
thismethod asModel Averagingwith Averaging CovarianceMatrix
(MAACM). This idea is similar to those in Xie (2015) and Gao et al.
(submitted for publication) where the estimators of error variance
also have average forms, but the models are different from ours.
The existing optimal model averaging methods for heteroscedas-
ticity include JMA and HRCp. In JMA, it is not necessary to estimate
the unknown covariancematrix, but Liu andOkui (2013) show that
JMA has aworse finite sample performance thanHRCp. In HRCp, an
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estimate of the covariancematrixmust be provided prior to choos-
ing the weight vector, so the HRCp estimator is a two-step esti-
mator. In contrast, the MAACM estimator is a continuous updating
estimator requiring only one step of calculation. Finite sample sim-
ulation results show that MAACM outperforms JMA and HRCp.

The remainder of this paper is organized as follows. Section 2
introduces our model averaging estimation and presents the
asymptotic optimality. Section 3 investigates the finite sample
performance of themodel average estimators. Technical proofs are
contained in an Appendix.

2. Model averaging estimation and its asymptotic optimality

Following Hansen and Racine (2012) and Liu and Okui (2013),
we consider linear model

yi = µi + ϵi = Xi
Tβ + ϵi, i = 1 . . . , n, (1)

where Xi = (xi1, . . . , xi∞)T, β = (β1, . . . , β∞)T, µi = E(yi|Xi),
and ϵ1, . . . , ϵn are independent random errors with E(ϵi|Xi) = 0
and E(ϵ2

i |Xi) = σ 2
i . So heteroscedasticity is allowed here. Let

X = (X1
T, . . . ,Xn

T)T, y = (y1, . . . , yn)T, and µ = (µ1, . . . , µn)
T.

Suppose that we have a total of Sn candidate models. For the
sth candidate model, we use an n × ps matrix X(s), a subset of X,
as the covariate matrix. The total number Sn can be related to the
sample size n. Using least squared estimation and assuming X(s) to
be of full column rank, the coefficient estimate under model s is
(X(s)

TX(s))
−1X(s)y, and then the associate estimator of µ is µ(s) =

X(s)(X(s)
TX(s))

−1X(s)y = P(s)y, where P(s) = X(s)(X(s)
TX(s))

−1X(s)
T.

Let weight vector w = (w1, . . . , wSn)
T, belonging to the set W =

{w ∈ [0, 1]Sn :
Sn

s=1 ws = 1} and P(w) =
Sn

s=1 P(s). Then,
the model average estimator of µ can be expressed by µ(w) =Sn

s=1 wsµ(s) = P(w)y.
Let � = diag(σ 2

1 , . . . , σ 2
n ). The predictive squared loss ofµ(w)

is Ln(w) = ∥µ(w) − µ∥
2 and the expected loss is

Rn(w) = E{Ln(w)|X} = ∥P(w)µ − µ∥
2
+ trace{P(w)�PT(w)}.

(2)

Define

Cn(w) = ∥µ(w) − y∥2
+ 2trace{P(w)�}. (3)

It is straightforward to show that Rn(w) = E{Cn(w)|X} −

E{trace(�)|X}, which indicates that for the selection of w, we can
ignore the offset E{trace(�)|X}, which does not involvew, and use
Cn(w) as if it were Rn(w).

The weight choice criterion Cn(w) still involves the unknown
�. We estimate � using residues from model averaging:ϵ(w) ≡

{ϵ1(w), . . . ,ϵn(w)}T = y − µ(w). Specifically, the estimator of �

is�(w) = diag{ϵ2
1(w), . . . ,ϵ2

n(w)}. (4)

In the existing model averaging methods such as MMA of Hansen
(2007) and HRCp of Liu and Okui (2013), the variance of random
error are generally estimated depending on a single model, which
places too much confidence the single model. Here, we use the
model average estimator �(w). Replacing � by �(w) in (3), Cn(w)
becomesCn(w) = ∥µ(w) − y∥2

+ 2trace{P(w)�(w)}.

Now, our weights are expressed by

w = argminw∈W
Cn(w). (5)

The weight choice criterionCn(w) is a cubic function ofw. Numer-
ous software packages are available for obtaining the solution to

this problem (e.g., Fmincon of Matlab), and they generally work ef-
fectively and efficiently even when Sn is very large.

Let p = maxs ps, ξn = infw∈W Rn(w),wo
s be a weight vector

with the sth element taking on the value of unity and other el-
ements zeros, ρ

(s)
ii be the ith diagonal element of P(s),maxi and

maxs indicate the maximization over i ∈ {1, . . . , n} and s ∈

{1, . . . , Sn}, respectively, andmini indicates theminimization over
i ∈ {1, . . . , n}. We now list the regularity conditions required for
the asymptotic optimality of the weights in (5), where all the lim-
iting properties here and throughout the text hold under n → ∞.

Condition (C.1). For constant κ > 0, constant σ̄ 2, and some integral
G ≥ 1,

max
i

E(ϵ4G
i |Xi) ≤ κ < ∞, Snξ−2G

n

Sn
s=1

{Rn(wo
s )}

G
→ 0,

min
i

σ 2
i ≥ σ̄ 2 almost surely.

Condition (C.2). There exists a constant c such that |ρ
(s)
ii | ≤ cn−1ps

almost surely for all s = {1, . . . , S} and i = {1, . . . , n}.

Condition (C.3). n−1p2 = O(1).

The first two parts of Condition (C.1) are widely used in lit-
erature on model averaging; see, for example, the conditions (7)
and (8) of Wan et al. (2010) and the assumptions 2.2 and 2.3 of
Liu and Okui (2013). The third part of Condition (C.1) requires that
the covariance matrix Ω does not degenerate as n → ∞. Condi-
tion (C.2) is commonly used in the studies of asymptotic optimal-
ity of cross-validation methods (e.g., Andrews, 1991; Hansen and
Racine, 2012). Condition (C.3), which is the same as the condition
(12) of Wan et al. (2010), restricts the increasing rates of ps’s as
n → ∞, but it still allows ps’s increase with n. The following the-
orem builds the asymptotic optimality of model average estimator
using weights w.

Theorem 1. Under Conditions (C.1), (C.2) and (C.3),

Ln(w)

inf
w∈W

Ln(w)
→ 1 (6)

in probability as n → ∞.

Theorem 1 shows that the model averaging procedure using
weights w is asymptotically optimal in the sense that its squared
loss is asymptotically identical to that of the infeasible best
possible model average estimator. The proof of Theorem 1 is in the
Appendix.

3. Simulation study

This simulation design is based on the setting of Hansen (2007),
except that the error term is heteroscedastic. Specifically, we gen-
erated data frommodel (1) withµi =


∞

j=1 xijβj and normal errors
ϵi ∼ Normal(0, x2i2). We set xi1 = 1 and observations of all other
xij’s are generated from theNormal(0, 1) distribution and are inde-
pendent. The coefficients θj = c

√
2αj−α−1/2, with c > 0 and α =

0.5.We control c such that R2
= c2/(1+c2) vary in {0.1, . . . , 0.9}.

The sample size varies at 100, 300, 600 and 900. The number of
approximating models is determined by Sn = INT (3n1/3), where
the function INT (A) returns the smallest integer that exceeds A.
The sth candidate model contains the first s observed covariates.
We compare MAACM, HRCp and JMA methods based on the av-
erage predictive squared loss Ln(w) in 1000 replications. For each
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