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h i g h l i g h t s

• Partial derivatives for heterogeneous coefficient SAR models are derived.
• Scalar summary measures proposed in the literature are not likely to work here.
• Observation-level marginal effects are proposed.
• Non-linear relationships between estimates and observation-level marginal effects arise as in probit.
• Spatial spill-out and spill-in effects can be quantified.
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a b s t r a c t

We consider interpretation of estimates from the heterogeneous coefficient spatial autoregressive panel
model of Aquaro et al. (2015) and derive partial derivatives (marginal effects) for this model, an issue not
discussed in Aquaro et al. (2015). We show how these differ from a conventional spatial autoregressive
panel model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Aquaro et al. (2015) make the observation that space–time
panel data samples covering longer time spans are becoming
increasingly prevalent.We letN denote the number of spatial units
in the sample and T the number of time periods. Panel data sets
with sufficiently large T allow us to exploit sample data along the
time dimension to produce parameter estimates for all N spatial
units. Allowing for heterogeneous coefficients for each spatial unit
holds a natural appeal when contrasted with conventional static
spatial panel models. The conventional static panel SAR model
takes the matrix–vector form: y = ψ(IT ⊗ W )y + (ιT ⊗ ιN)α +

∗ Correspondence to: Texas State University, 601 University Drive, San Marcos,
TX 78666, USA. Tel.: +1 512 245 0256; fax: +1 512 245 3089.

E-mail address: james.lesage@txstate.edu (J.P. LeSage).

Xβ + ε, where we ignore region-specific and time-specific fixed
effects as they do not enter into our discussion. The NT -vector y
is related to contemporaneous values from neighboring regions,
(IT ⊗ W )y, with the scalar ψ reflecting the amount of spatial
interaction between neighboring regions. The NT × K matrix X
contains explanatory variables for each of the N regions over the
T time periods, and the K × 1 vector β are associated coefficients,
and α a scalar intercept term. Disturbances in the NT × 1 vector
ε are typically assumed to be normally distributed with constant
scalar variance and zero covariance (see Elhorst, 2014).

In conventional homogeneousmodels, parametersβ describing
the relationship between NT outcomes in the vector y and the
NT × K matrix of regional characteristics X , are assumed the same
for all regions and timeperiods in the sample. In addition, the scalar
parameter ψ representing the level of spatial interaction between
observed outcomes over time and space in the NT vector y and
neighboring region outcomes in theNT spatial lag vector (IT ⊗W )y,
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are assumed the same for all regions and time periods. Aquaro
et al. (2015) argue there are a great many economic reasons to
believe that the level of interaction between (say US states) differs
greatly when considering patterns of spatial spillovers associated
with things like tobacco consumption, house prices, labor market
variables, etc.We should also note that some spatial data represent
point-level rather than regional observations. For example, we
may have spatial observations on firms such as gas stations, and
wish to consider pricing behavior (price reaction functions) of
these firms. Conventional/homogeneousmodels would allow us to
estimate a single reaction function reflecting behavioral reactions
of the average or typical firm. The heterogeneous coefficientmodel
would allow us to estimate firm-level reactions, which seems
desirable in cases where we are studying firm-level decisions.

Aquaro et al. (2015) provide theoretical results showing con-
sistent asymptotic normality of quasi maximum likelihood (QML)
estimates for a heterogeneous coefficients spatial autoregressive
(HSAR) panel model specification that allows for variation in the
level of spatial dependence/interaction (ψi, i = 1, . . . ,N), vari-
ation in coefficients (αi, βi, i = 1, . . . ,N), and noise variances
(σ 2

i , i = 1, . . . ,N). They also explore small sample performance
of their QML estimator using a Monte Carlo study that considers
cases ranging over N = 25 to N = 100, and T = 25 to T = 200.

They do not discuss interpretation of HSAR estimates, which
involves considering the partial derivatives of y with respect to
changes in the K different explanatory variables in the matrix X
(excluding any constant term). In Section 2 we present the het-
erogeneous SAR model. We discuss interpretative considerations
for these models and contrast these with conventional homoge-
neous coefficient SARmodels in Section 3.1.We set forth the partial
derivatives (marginal effects) for thesemodels in Section 3.2which
serve as the basis for inference regarding the impact of changes in
explanatory variables on outcomes.

2. The HSAR model

The heterogeneous SARmodel (whichwe label HSAR hereafter)
can be written as in (1), where wij represents the i, jth element of
a normalized spatial weight matrix withwii = 0.1

yit = αi + ψi

N
j=1

wijyjt +

K
k=1

βk
i x

k
it + εit ,

i = 1, 2, . . . ,N, t = 1, 2, . . . , T . (1)

The set of K explanatory variables xkit are assumed exogenous,
andwe require that covariancematrices E(xkitx

k′
jt ),∀ i, j, k are time-

invariant and finite as well as non-singular. The requirement of
time-invariance arises because we are using the time dimension
of the sample data to estimate parameters for each regional
unit, i = 1, . . . ,N . The disturbances are assumed distributed
independently, and for our purposes we can assume these follow
independent normal distributionswith a different variance (σ 2

i ) for
each observation.

The HSAR model can be written in matrix notation as shown in
(2) by stacking regional units,

yt = α + ΨWyt +

K
k=1

Bkxkt + εt (2)

where α = (α1, α2, . . . , αN)
′, Ψ = diag(ψ), ψ = (ψ1, ψ2, . . . ,

ψN), W = wij, i, j = 1, . . . ,N , Bk
= diag(βk

1, β
k
2, . . . , β

k
N),

xkt = (xk1t , x
k
2t . . . , x

k
Nt)

′, εt = (ε1t , ε2t , . . . , εNt)
′, with εt ∼

1 We will have more to say about specific normalization schemes later.

N[diag(0), diag(Σ)], Σ = (σ 2
1 , σ

2
2 , . . . , σ

2
N). That is, we assume

disturbances that are normally distributed with zero mean and
zero covariance, but allow for separate variances for each region.

The data generating process for the HSARmodel can be written
as:

yt = (IN − ΨW )−1


α +

K
k=1

Bkxkt + εt


. (3)

3. A comparison of homogeneous and heterogeneous model
effects estimates

In Section 3.1 we review interpretation of the homogeneous
coefficient SAR model, which is contrasted with our proposed
interpretation of the heterogeneous coefficient SAR model in
Section 3.2.

3.1. Interpreting homogeneous coefficient SAR models

In the case of homogeneous static panel data models, Elhorst
(2014) follows LeSage and Pace (2009) proposing an average of the
main diagonal elements of the N × N matrix of partial derivatives
for this model shown in (4) as a scalar summary measure of own-
partial derivatives that LeSage and Pace (2009) label direct effects.
This simplifies the task of interpreting estimates from the model,
which take the form of an N × N matrix for each of the K
explanatory variables. LeSage and Pace (2009) also propose a scalar
summary measure of the indirect effects (spatial spillover) impacts
based on the cumulative sum of the off-diagonal elements from
each row, averaged over all rows. A scalar summarymeasure of the
total impact of a change in regional outcomes arising from changes
in the kth regional characteristic is the sum of the scalar direct
plus indirect effects estimates. In the case of the homogeneous
coefficientmodelswhere allψi = ψ and allβk

i = βk, this approach
holds intuitive appeal.

The motivation for this approach is based on the N × N matrix
of partial derivatives for the homogeneous SAR model:

∂y/∂Xk′
=


∂y1/∂xk1 ∂y1/∂xk2 · · · ∂y1/∂xkN
∂y2/∂xk1 ∂y2/∂xk2 · · · ∂y2/∂xkN

...
...

. . .
...

∂yN/∂xk1 ∂yN/∂xk2 · · · ∂yN/∂xkN


= (IN − ψW )−1INβk (4)

where Elhorst (2014) notes that this expression arises from
recognizing that the coefficients ψ, β do not change over the
time periods of the panel. Main diagonal elements of the matrix
(IN −ψW )−1INβk reflect own-partial derivatives and off-diagonal
elements represent cross-partial derivatives.

Although LeSage and Pace (2009) do not recommend reporting
observation-level effects estimates, one could calculate these for the
homogeneous coefficients SAR model using the N × 1 diagonal
elements of the matrix (IN − ψW )−1INβk as observation-level
direct effects, and the cumulative sum of off-diagonal rows (or
columns) of this matrix as observation-level indirect effects. Since
this approach would correspond most closely to observation-
level effects estimates that we propose in the next section for
the heterogeneous SAR model, we enumerate properties of these
observation-level direct and indirect effects estimates for the case
of the homogeneous SAR specification.
(1) For spatial weight matrices based on some fixed number m

of equally weighted neighbors for all observations, there is
no variation in the diagonal elements of the N × N matrix
(IN − ψW )−1INβk, and cumulative sums of off-diagonal row-
or column-elements corresponding to observation-level direct
and indirect effects.
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