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h i g h l i g h t s

• The Generalized Second Price Auction is commonly used by search engines.
• The Generalized Second Price Auction is shown to be optimal for the sale of a good.
• The result is based on linear programming duality and submodular minimization.
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a b s t r a c t

We prove that a variant of the second price auction for the sale of a single good through a Bayesian
incentive compatible mechanism that maximizes expected revenue of the seller is optimal when the type
space is discrete. Moreover, we show that this variant is related to the widely used generalized second
price auction mechanism in keyword-auctions for advertising, thus providing a theoretical justification
for a practical tool.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A common tool used by search engines for online keyword
advertising is the generalized second price (GSP) auction, the
properties of which have been analyzed by Edelman et al. (2007).
In the simplest version of GSP, a bidder in the ith position would
pay the bid of the bidder in the (i+1)-th position plus a surcharge.
The GSP mechanism generates billions of dollars of revenues for
internet companies as documented in Edelman et al. (2007).

In a seemingly unrelated line of work, and as a culmination of
fifteen years of research Vohra (2012, 2011) established the dis-
crete types analogs of the celebrated optimal auction results by
Myerson (1981) for an expected revenue maximizing seller using
well-known tools from linear programming duality and submodu-
lar optimization.
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The purpose of this note is to show that a variant of the second
price auction is optimal when the type space is discrete by making
precise a statement by Vohra in Vohra (2012) which advocates
a possible implementation of an optimal auction in a Myerson
frameworkwith discrete valuations of buyers for the sale of a single
good, and to connect this thread to the popular GSP mechanism.
More precisely, the claim was as follows (see p. 296 of Vohra,
2012):

....This is not the only implementation. There are other
implementations that achieve the same interim allocation
probabilities and expected payments. One of these is a second
price auction with reserve. That is, the highest bidder wins, but
pays the larger of the second highest bid and the reserve. In the
event the highest bid does not exceed the reserve, the seller
withholds the good.

We show that one should exercise some care in using this state-
ment as it requires an alteration. We shall do so by first sum-
marizing briefly the result of Vohra (2012), and then examining
the above statement. Using the modern tools of Vohra (2012) that
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are becoming the new standard in the profession we establish a
suitable adjustment of the claim, namely a scheme called the ‘‘dis-
crete second price auction’’, a version of which is precisely the GSP
mechanism. Thus, our work provides an easy to follow theoreti-
cal justification to the optimality of the generalized second price
auction. We also develop a quantization of valuations that makes a
(true) second price auction implementation possible in a discrete
type space framework in the limit.

Our result is also closely related to Harris and Raviv (1981)
which considered the design of an optimal auction for discrete
type spaces (an equally spaced set of types) with two bidders
and a revenue maximizing seller. It turns out that the optimal
mechanism they obtain is also a discrete second price auction
(or a generalized second price auction). Using the tools of the
present paper, we also arrive at a multiple bidder version of their
result obtained using a different method for two bidders. The fact
that discrete types affect the insights obtained in continuous type
spaces was also the central point of Lovejoy (2006) more recently,
where similar observations were made in a more involved setting
of optimal mechanism design with quasi-linear utilities, utilizing
the concept of supermodularity.

2. The setting

We use exactly the setting of Vohra (2012, 2011), and sketch
only the main ideas. For the details, the reader is referred to these
two sources.

A risk neutral seller with a single good is facing n risk neutral
buyers that have non-negative private valuation for the good.
These private valuations will be addressed as ‘‘agents’ types’’ and
valuation of the seller is assumed to be equal to 0. We define
T = {1, 2, . . . ,m} as the type spacewhose discrete formwill allow
the use of linear programming. The probability that an agent is of
type t is commonly known, and is denoted by ft > 0 for all t ∈ T .
The Revelation Principle allows to focus on directmechanisms only
(see e.g., Myerson, 1981).

We use t ∈ T n to denote a profile vector. The symbols a and
p are defined to be allocation and payment rule, respectively. The
symmetry assumption allows focusing on one agent, say agent 1.
We use ai(i, t−1) for the allocation to agent 1, and pi(i, t−1) is the
payment done by agent 1 when she reports her type as i ∈ T and
all other agents report t−1. We use π(t−1) for the probability of
agents having types that give rise to the profile t−1. The number of
agents with type i in profile t is shown by ni(t). Interim (expected)
allocation and payment are denoted accordingly when all agents
other than agent 1 report their type truthfully:

A(i) =


t−1∈Tn−1

ai(i, t−1)π(t−1),

P(i) =


t−1∈Tn−1

pi(i, t−1)π(t−1).

The objective of the problem is to maximize the seller’s expected
revenue, and we face the following optimization problem:

max
P,A,a


i∈T

fiP(i)

s.t. iA(i) − P(i) ≥ iA(j) − P(j) ∀i, j ∈ T (1)
iA(i) − P(i) ≥ 0 ∀i ∈ T (2)

A(i) =


t−1∈Tn−1

ai(i, t−1)π(t−1) ∀i ∈ T (3)
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T n (4)

ai(t) ≥ 0 ∀i ∈ T , ∀t ∈ T n. (5)

Obviously, constraints (4) and (5) ensure that only one good is al-
located for each profile and no agent receives a negative amount
while constraint (3) only relates interim allocation variables to
allocation rule variables. Constraint (2) expresses individual ratio-
nality, and constraint (1) is the Bayes–Nash Incentive Compatibil-
ity (BNIC) constraint. It is clear that we are only interested in the
mechanisms in which the optimal strategy is to report truthfully.

3. The solution

Consider the system of constraints (1) and (2). The following is
well-known:

Theorem 1. System (1) is feasible if and only if interim allocations
are monotonic. That is, if i ≤ j, then A(i) ≤ A(j).

Then, to maximize expected revenue one sets each P(i) to its
upper bound which is equal to

i
k=1 kA(k) − kA(k− 1) (the upper

bound is calculated using the result of the above theorem). Define
ν(i) = i − 1−F(i)

fi
. If the hazard function is monotone then ν(i) is

non-decreasing in i. Now the formulation is:

max
A,a


i∈T

fiν(i)A(i)

s.t. 0 ≤ A(1) ≤ · · · ≤ A(m)

A(i) =


t−1∈Tn−1

ai(i, t−1)π(t−1) ∀i ∈ T (3)
i∈T

ni(t)ai(t) ≤ 1 ∀t ∈ T n (4)

ai(t) ≥ 0 ∀i ∈ T , ∀t ∈ T n. (5)

At this point, one takes out ai(t) variables in order to end up with
a polymatroid optimization problem as a result of the following
theorem.

Theorem 2 (Border’s Theorem). The expected allocation A(i) is
feasible if and only if

n

i∈S

fiA(i) ≤ 1 −


i∉S

fi

n

∀S ⊆ T .

Using this theorem the reduced formulation becomes:

max
A


i∈T

fiν(i)A(i)

s.t. 0 ≤ A(1) ≤ · · · ≤ A(m)

n

i∈S

fiA(i) ≤ 1 −


i∉S

fi

n

∀S ⊆ T .

Then, defining the function G(S) which is nondecreasing, non-
negative and submodular, and setting xi = fiA(i) for all i ∈ T we
get the problem

max
A


i∈T

ν(i)xi (OPTb)

s.t. 0 ≤
x1
f1

≤ · · · ≤
xm
fm


i∈S

xi ≤ G(S) =

1 −


i∉S

fi

n

n
∀S ⊆ T .

Ignoring the monotonicity constraint, this becomes a polymatroid
optimization problem which is solved optimally by the Greedy
Algorithm. Under the monotone ν(i) function assumption, the
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