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h i g h l i g h t s

• We study attribute decomposable multidimensional inequality indices.
• We exploit their decomposition by attributes in several ways.
• We derive the asymptotic distribution of the vector of inequality measures.
• We derive joint hypotheses tests on the vector of inequality measures.
• We present Monte Carlo evidence on their finite sample behavior.
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a b s t r a c t

An inequality index over p dimensions of well-being is decomposable by attributes if it can expressed
as a function of p unidimensional inequality indices and a measure of association between the various
dimensions of well-being. We exploit this decomposition framework to derive joint hypothesis tests
regarding the sources of multidimensional inequality, and present Monte Carlo evidence on their finite
sample behavior.

© 2016 Elsevier B.V. All rights reserved.

Economists often study inequality in well-being using indices
that satisfy known sets of ethical axioms and/or statistical proper-
ties. The use of unidimensional inequality indices in the analysis of
income distributions is well-established (e.g. Cowell and Flachaire,
2007). Recently, multidimensional indices that measure inequal-
ity in the joint distribution of several attributes (e.g. income and
health) have also received attention, in recognition ofwell-being as
a multidimensional concept (e.g. Justino et al., 2004; Zhong, 2009;
Abu-Zaineh and Abul Naga, 2013).

There is an important class of multidimensional inequality in-
dices that satisfy attribute decomposability (Abul Naga and Geof-
fard, 2006; Kobus, 2012). This property allows a multidimensional
index to be disaggregated as a function of unidimensional indices
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for individual attributes and a measure of association between at-
tributes. Intergroup or temporal variations in the overall multidi-
mensional inequality can therefore be traced to variations in its
unidimensional inequality and association measure components.
The related statistical inference naturally entails joint hypothesis
tests on particular subsets of those components. But the inferen-
tial framework has not been developed yet, and empirical results
to date are presented without statistical tests.

This paper complements the existing literature on single hy-
pothesis tests on unidimensional indices (e.g. Davidson and
Flachaire, 2007) and the aggregated forms of multidimensional
indices (Abul Naga, 2010), by developing a framework for test-
ing joint hypotheses on unidimensional indices and an associa-
tion measure that arise from decomposing a multidimensional
index. Our Monte Carlo evidence suggests that, combined with
bootstrapping, the proposed chi-squared tests provide reliable
tools for drawing finite sample inferences.
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1. Attribute decomposable inequality indices

Consider data on p attributes of well-being in a sample of n
individuals. Individual i has resources xi := (xi1, . . . , xip), where

xi ∈ Rp
++. We gather the data in a matrix X :=

x1
.
.
.
xn

 ∈ Rn×p
++ ,

and let x̄ :=
1
n

n
i=1 xi = (x̄1, . . . , x̄p) denote the vector of sample

means.
Let ι̂ : Rn×p

++ → R+ denote a multidimensional inequality
index, W : Rn×p

++ → R be the social welfare function underlying
the derivation of ι̂, and ω := W (X) be the level of welfare
attained by X . If W satisfies the standard axioms of anonymity,
additivity across individuals, continuity, increasing monotonicity
and equality preference, onemay define an increasing and concave
utility function u(.) such that W (X) =

1
n

n
i=1 u(xi), and a scalar

θ̂ (X) in the unit interval such that u(θ̂ x̄) =
1
n

n
i=1 u(xi). The

scalar θ̂ is an index of multidimensional equality in X , and ι̂(X) :=

1 − θ̂ (X) is the corresponding inequality index.
Assume furthermore that W is scale-invariant, and consider

for expositional simplicity the case of two attributes (p = 2) of
well-being.1 Then the utility function underlying the definition of
W takes one of three possible forms (Aczel, 1988; ch. 4, Corol-
lary 4):

u(xi1, xi2) : = xα
i1x

β

i2 α, β > 0, α + β ≤ 1 (1)

u(xi1, xi2) : = −xα
i1x

β

i2 α, β < 0 (2)

u(xi1, xi2) : = α ln xi1 + β ln xi2 α, β > 0. (3)

A multidimensional Atkinson–Kolm–Sen (mAKS) inequality in-
dex arises from (1) and (2), while a multidimensional mean-
logarithmic deviation (mMLD) inequality index arises from (3)
(Tsui, 1995).

Abul Naga and Geoffard (2006) show that both mAKS and
mMLD indices are decomposable by attributes. The mAKS equality
index can be written as a function of three components,
θ̂mAKS(X) = exp( α

(α+β)
ln δ̂1 +

β

(α+β)
ln δ̂2 +

1
(α+β)

ln δ̂3) where

δ̂1 =


1
n

n
i=1

xα
i1

1/α 
x̄1 (4)

δ̂2 =


1
n

n
i=1

xβ

i2

1/β 
x̄2 (5)

δ̂3 =

1
n

n
i=1

xα
i1x

β

i2
1
n

n
i=1

xα
i1


1
n

n
i=1

xβ

i2

 . (6)

θ̂mAKS(X) is the aggregated form and δ̂ = (δ̂1 δ̂2 δ̂3)
′ the disaggre-

gated form of the mAKS index. δ̂1 (δ̂2) is the unidimensional AKS
index of equality in the first (second) attribute, and δ̂3 is a measure
of association between the two attributes.2 The mMLD equality in-
dex can be written as a function of two components, θ̂mMLD(X) =

1 Let Y ∈ Rn×p
++ be another datamatrix andΛ be a p×p positive-definite diagonal

matrix. W (.) is scale-invariant when W (X) = W (Y ) if and only if W (XΛ) =

W (YΛ).
2 As in the multidimensional case, 1 − δ1 and 1 − δ2 are the corresponding

inequality indices.

exp( α
(α+β)

ln δ̂1 +
β

(α+β)
ln δ̂2), where

δ̂j = exp


1
n

n
i=1

ln(xij) − ln x̄j


j = 1, 2. (7)

δ̂1 and δ̂2 are unidimensional MLD equality indices. The mMLD in-
dex is strongly decomposable à la Kobus (2012), because θ̂mMLD is en-
tirely characterized by the two equality indices pertaining to each
attribute’s marginal distribution. Since the mAKS and mMLD in-
equality indices areιmAKS(X) := 1 − θ̂mAKS(X) andιmMLD(X) :=

1 − θ̂mMLD(X), they are also decomposable by attributes.

2. Large sample distribution

Let δ̂(X) = (δ̂1, . . . , δ̂k)
′ denote the vector of equality indices

and measure of association in the sample.3 For estimation and
inference, it is convenient to define δ̂(X) in relation to m sample
moments of X ,

s :=


1
n

n
i=1

g1(xi) · · ·
1
n

n
i=1

gm(xi)


(8)

via a function F : Rm
−→ Rk such that δ̂ = F(s). One can

then define the population indices δo in relation to m population
moments,

σo :=

E[g1(xi)] · · · E[gm(xi)]


(9)

such that δo = F(σo). For instance, in the context of the mAKS
index we have

s :=


x̄1 x̄2

1
n

n
i=1

xα
i1x

β

i2
1
n

n
i=1

xα
i1

1
n

n
i=1

xβ

i2


(10)

σo :=

E(x1) E(x2) E(xα

1 x
β

2 ) E(xα
1 ) E(xβ

2 )


(11)

and in the context of the mMLD index,

s :=


x̄1 x̄2

1
n

n
i=1

ln(xi1)
1
n

n
i=1

ln(xi2)


(12)

σo :=

E(x1) E(x2) E(ln x1) E(ln x2)


. (13)

Let ḡj denote the jth component of s, i.e. ḡj =
n

i=1 gj(xi)/n, and
Z be an n × m matrix where

Z :=

g1(x1) − ḡ1 · · · gm(x1) − ḡm
...

...
g1(xn) − ḡ1 · · · gm(xn) − ḡm

 . (14)

Define also the k × m Jacobian matrix J := ∂F/∂σ,

J :=

∂F1/∂σ1 · · · ∂F1/∂σm
...

∂Fk/∂σ1 · · · ∂Fk/∂σm

 . (15)

where σj refers to the jth component of σo.
Under appropriate assumptions, the Continuous Mapping The-

orem ensures that δ̂ = F(s) is a consistent estimator of δo = F(σo).
Specifically, consider the following assumptions:

3 In general, k = p+1 as the decomposition produces p equality indices together
with an association measure. However, k = p when the multidimensional index is
strongly decomposable (as is the case in the context of θ̂mMLD).
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