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h i g h l i g h t s

• A nonparametric unit root test robust to nonstationary volatility is proposed.
• The proposed test statistic does not require a correction of serial correlation.
• The proposed test is correctly sized and has desirable power.
• In finite sample properties, our test outperforms other tests in the literature.
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a b s t r a c t

Wedevelop a newnonparametric unit root testingmethod that is robust to permanent shifts in innovation
variance. Unlike other methods in the literature, our test does not require a parametric specification or
lag/bandwidth selection to adjust for serial correlation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent body of empirical evidence indicates that variance shifts
(nonstationary volatility) is a common occurrence in macroeco-
nomic and financial data; see Busetti and Taylor (2003), McConnell
and Perez-Quiros (1998) and Sensier and Van Dijk (2004). This
finding coupled with nonstationarity in the levels of these types
of data led the researchers to investigate the impact of variance
shifts onunit root tests. In one of these studies, Cavaliere and Taylor
(2007), henceforth CT, document that under nonstationary volatil-
ity, the asymptotic distributions of standard unit root tests are
altered by the inclusion of a new nuisance parameter called the
‘‘variance profile’’, leading to size distortions in these tests. In or-
der to achieve correct inference, CT suggest first consistently esti-
mating this nuisance parameter and then updating the asymptotic
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distribution of Phillips and Perron’s (1988) testswith this estimate.
While their inclusion of the newnuisance parameter generates sig-
nificant gains in size over classical unit root tests, they still rely on
the methodologies used in earlier studies to correct for other nui-
sance parameters such as serial correlation in errors. CT adjust their
test statistic via the estimation of the long run variance, obtained
by a semi-parametric kernel or a parametric ADF based regression
estimation. The success of these methods highly depends on lag
length, bandwidth and Kernel selection in terms of finite sample
properties. In this paper,we propose a nonparametric unit root test
that is robust to nonstationary volatility problem yet does not re-
quire a long run variance estimation.

We derive our test statistic by modifying Nielsen’s (2009)
nonparametric variance ratio statistic with the nonparametric
variance profile estimator of CT. Computation of the proposed test
statistic involves a fractional transformation of observed series, but
it does not require any parametric regression or the choice of any
tuning parameters like lag length and bandwidth. Therefore, we
not only modify Nielsen’s test to be robust against nonstationary
volatility, but also improve on the finite sample properties of CT
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statistic for all considered types of serial correlation. Derivation of
the limiting distribution of fractionally integrated processes with
nonstationary volatility and the proofs are placed in Appendix.1

2. Model and variance ratio test

2.1. Model

Let {xt}Tt=0 be generated by:

xt = yt + θ ′δt (1)
yt = ρyt−1 + ut (2)

ut = C(L)εt (3)
εt = σtet (4)

where et ∼ i.i.d.(0, 1) and θ ′δt is the deterministic term and C(L)
is the lag polynomial. From CT, we have following assumptions:

Assumption. A.1 The lag polynomial C(L) ≠ 0 for all |L| ≤ 1, and
∞

j=0 j|cj| < ∞. E|et |r < K < ∞ for some r ≥ 4.
A.2 ρ satisfies |ρ| ≤ 1.
A.3 σt satisfies σ⌊Ts⌋ := ω(s) for all s ∈ [0, 1], where ω(.) ∈ D

is non-stochastic and strictly positive. For t < 0, σt is uniformly
bounded, that is there exists a σ ∗ such that σt ≤ σ ∗ < ∞.

The assumptions A.1 and A.2 are very standard in unit root
testing literature. CT characterize the dynamics of innovation
variance in A.3, which should be bounded and display a countable
number of jumps.

A fundamental object that is defined in CT is given below:

η(s) :=

 1

0
ω(r)2dr

−1  s

0
ω(r)2dr


. (5)

This object is referred to as the variance profile of the process.
Further, CT show that

 1
0 ω(r)2dr = ω̄2 is the limit of T−1T

t=1 σ 2
t .

2.2. Variance Ratio test under nonstationary volatility

So as to modify the Variance Ratio test (Nielsen, 2009) statistic
we first need the fractional partial sum operator for some d > 0:

x̃t := ∆−d
+

xt = (1 − L)−d
+

xt =

t−1
k=0

Γ (k + d)
Γ (d)Γ (k + 1)

xt−k

=

t−k
k=0

πk(d)xt−k (6)

where Γ (.) is gamma function. Under the assumptions A,
following lemmas hold:

Lemma 1. Assume that {ut}
T
t=0 is generated by (3)–(4) and ρ =

1 − c/T with c ≥ 0.

i. yT (t) = T−1/2⌊Tt⌋
k=1 e

−c(⌊Tt⌋−k)uk
w

−−−−→ ω̄C(1)Jcω(t), where
Jcω(t) =

 t
0 exp(−c(t−s))dBω(s) andBω(s) = ω̄−1

 s
0 ω(r)dB(r).

ii. Bω(s) = Bη(s) := B(η(s)) where Bη(s) variance transformed
Brownian motion, η(s) is defined in (5). Thus, Jcη(t) := Jcω(t) = t
0 exp(−c(t − s))dBη(s).

iii. For all d > 0, ỹT (t) = T−d∆−d
+ yT (t)

w
−−−−→ ω̄C(1)Jcω,d(t),

where Jcω,d(t) = Γ (d + 1)−1
 t
0 (t − s)ddJcω(s). Further, we have

Jcω,d(t) = Jcη,d(t).

1 The notation in the paper follows Cavaliere and Taylor (2007).

Remark 1. Lemma 1(i) and (ii) are from Cavaliere (2005) and
CT. Lemma 1(iii) is new and establishes weak convergence for
fractionally integrated processes with non-stationary volatility.
Although Demetrescu and Sibbertsen (2014) model the fractional
integrated process with non-stationary volatility, they do not
establish weak convergence of this object.

Remark 2. Note that under the null hypothesis of ρ = 1 or c =

0 the above variance transformed Uhlenbeck–Ornstein process
becomes a variance transformed Brownian motion. For instance,
under the null the partial sum process ỹT (t) will converge to
ω̄C(1)

 t
0 (t − s)ddBη(s) where we can define Bη,d(t) :=

 t
0 (t −

s)ddBη(s). This limiting distribution resembles the type II fractional
Brownian motions defined by Marinucci and Robinson (2000),
since Bη,d(t) does not contain any pre-historic influence (see also
Wang et al., 2002).

Like Nielsen (2009), we apply OLS detrending to the observed
series xt to clean out the deterministic terms. Let x̂t be the OLS
detrended residuals and defining ˜̂xt = ∆−d

+ x̂t , our test statistic is
then given by:

τη(d) = T 2d

T
t=1

x̂2t

T
t=1

˜̂x
2
t

. (7)

Theorem 1. Assume that the time series {xt} is generated by Eqs. (1)–
(4) and ρ = 1 − c/T for c ≥ 0. Let j = 0 when δt = 0, j = 1 when
δt = 1 and when δt = [1, t]′ for d > 0

i. x̂T (t)
w

−−−−→ Jcη,j(t) where Jcη,j(t) = Jcη(t) −

 1
0 Jcη(s)Dj(s)′ds


 1

0 Dj(s)Dj(s)′ds
−1

Dj(t) for j = 1, 2, and D1(s) = 1, D2(s) =

[1, s]′ and Jcη,0(t) = Jcη(t).

ii. ˜̂xT (t)
w

−−−−→ Jcη,d,j(t) where Jcη,d,j(t) = Jcη,d(t) −

 1
0 Jcη,d(s)Dj

(s)′ds
  1

0 Dj(s)Dj(s)′ds
−1  t

0
(t−r)d−1

Γ (d) Dj(r)dr for j = 1, 2.
Further Jcη,d,0(t) = Jcη,d(t).

iii. τη(d) = T 2d
T

t=1 x̂2tT
t=1

˜̂x
2
t

w
−−−−→ Uj,η(d) =

(ω̄C(1))2
 1
0 Jc

η,j(s)
2ds

(ω̄C(1))2
 1
0 Jc

η,d,j(s)
2ds

= 1
0 Jc

η,j(s)
2ds 1

0 Jc
η,d,j(s)

2ds
.

Remark 3. Note that short run dynamics cancel out in asymptotic
distribution since the numerator and the denominator share the
same long run variance component in part (iii).

2.3. Simulated asymptotic distribution

The test statistic obtained in Theorem 1 involves η(s) as
nuisance parameter which can be consistently estimated by
modifying the nonparametric estimator in CT:

η̂(s) :=

⌊Ts⌋
t=1

(1x̂t)2 + (Ts − ⌊Ts⌋)(1x̂⌊Ts⌋+1)
2

T
t=1

(1x̂t)2
. (8)

Theorem 2. Under the conditions of Theorem 1

i. (CT show) Bη̂,T (s) := T−1/2⌊(η̂⌊Ts⌋/T )T⌋

t=1 et
w

−−−−→ Bη(s).
ii. Bη̂,d,T (s) := T−d∆−d

+ Bη̂,T (s)
w

−−−−→ Bη,d(s).
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