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• We propose a new average derivative estimator based on pointwise derivative estimate.
• Our estimator reaches the optimal convergence rate.
• The superiority of our proposed estimator is illustrated by simulation.
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a b s t r a c t

In this paper, we propose to estimate average derivatives of a function by averaging the sample pointwise
local linear derivatives with the bandwidth being selected optimally. Our estimator has better finite
sample performance than that of Li, Lu & Ullah (2003) because our pointwise derivative estimate reaches
the optimal convergence rate. Simulations confirm our theoretical analysis.
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1. Introduction

In recent years, much nonparametric literature have studied
the estimation of marginal effect which is of crucial interest to ap-
plied economists. Earlywork on kernel estimation of the pointwise
derivative includes Casser and Muller (1984) and Rilstone and Ul-
lah (1989). Then, Hardle and Stoker (1989), Rilstone (1991), Powell
et al. (1989) and Hardle et al. (1992), and Newey and Stoker (1993)
propose

√
n-consistent average derivative estimators, and these

estimators are based on Nadaraya and Watson’s local constant es-
timators.

Local linear estimator is first studied by Stone (1977) and Cleve-
land (1979). Fan (1992), Fan (1993), and Fan and Gijbels (1992)
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show that, compared to Nadaraya–Watson estimator, local linear
estimator has better asymptotic properties: it has better boundary
behavior, and is unbiasedwhen the truemodel is linear. Therefore,
many researchers construct their nonparametric conditional mean
and its derivative estimators based on the local linear method. See
Cleveland and Devlin (1988), Ruppert and Wand (1994), Kniesner
and Li (2002), and Li et al. (2003), among others.

Li et al. (2003) propose a local linear average derivative
estimator. They derive its asymptotic normal distribution and
compare it with the alternative estimators proposed by Hardle and
Stoker (1989) and Rilstone (1991). Their simulation results show
that the local linear average derivative estimator compares well
with the Hardle and Stoker (1989) and Rilstone (1991) estimators.

One shortcoming of Li et al. (2003) is that it relies on the
traditional least squares cross-validation (LSCV) of conditionmean
for bandwidth selection. This method is not optimal for derivative
estimation. The bandwidth selection is of crucial importance
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in nonparametric estimation. Different bandwidths can generate
dramatically different nonparametric estimation results. Given
such importance, many studies focus on how to appropriately
select the bandwidth for local linear estimation of conditional
mean function. However, the optimal smoothness parameter for
estimation of conditional mean may not be appropriate when
estimating derivative of conditional mean function is of interest.
There is an extensive literature on the bandwidth selection for
derivative function estimation. Rice (1986) uses a differencing
operator and an unbiased estimator of mean integrated squared
error (MISE) between the estimated and the true derivative to
select a optimal bandwidth for derivative function. Subsequently,
Muller et al. (1987) formally propose a differencing operator for
calculating gradients and naturally extend LSCV method to select
optimal bandwidth. Other papers in this field include Fan and
Gijbels (1995), Fan et al. (1996), Ruppert (1997), Charnigo et al.
(2011) and Henderson et al. (2015), among others.

In this paper, we propose a new average derivatives estima-
tor based on Li et al. (2003) in which the bandwidth is selected
by Gradient-Based least squares Cross-Validation (GBCV) method
suggested by Henderson et al. (2015). Moreover, we extend the
asymptotic normality for average derivative estimator with deter-
ministic bandwidth (e.g., Li et al. (2003)) to allow for optimally se-
lected stochastic bandwidth.

The remaining part of the paper is organized as follows. In
Section 2, we introduce our proposed average derivatives estima-
tor with fully data-driven selected bandwidth and its asymptotic
properties. Section 3 reports simulation results on estimating av-
erage derivatives by Li et al. (2003) with three different bandwidth
selectionmethods, and evaluates their finite sample performances.
Conclusion appears in Section 4.

2. Local linear estimation of average derivatives and gradient
based cross-validation of bandwidth selection

We consider the following nonparametric regression:

Yi = m(Xi) + Ui (2.1)

where Xi ∈ D, D is a compact subset of Rd and the unknown
conditional mean functionm(·) has continuous derivatives of total
order p+1. Denotem(1)(x) = (∂m(x)/∂x1, . . . , ∂m(x)/∂xd)′ as the
d×1 partial derivative functions ofm(x). The local linear estimator
solves the following minimization problem:

min
{all,bll}

n
i=1


Yi − all(x) − bll(x)′(Xi − x)

2 K Xi − x
h


(2.2)

where K(·) is the product kernel function and h is the bandwidth
vector of dimension d. Let âll(x) and b̂ll(x) be the solutions to (2.2),
and they are consistent estimators ofm(x) andm(1)(x) respectively.
Define δll(x) ≡ (all(x), bll(x)′)′, and the local linear estimator can
be written explicitly as follows:

δll(x; h) =


n

i=1

K

Xi − x

h


1

Xi − x

 
1 (Xi − x)′

−1

×

n
i=1


Xi − x

h


1

Xi − x


Yi. (2.3)

Li et al. (2003) suggest obtaining the average derivative
estimator by averaging the estimated pointwise derivatives from
(2.3):

bll(h) =
1
n

n
i=1

bll (Xi; h) . (2.4)

However, in Eq. (2.4), Li et al. (2003) use Least Squares Cross-
Validation (LSCV) method to select h, which is not optimal for av-
erage derivative estimation. Theoretically, the optimal bandwidth
for derivative estimator should be chosen so that it minimizes
the expected mean squared error E{[β̂LL(x) − βtrue(x)]2}, and the
gradient-based least squares cross-validation (GBCV) function is
the sample analog of the expected mean squared error. Therefore,
we propose to use the bandwidth selection method by Henderson
et al. (2015) which has the oracle property: their selected band-
width is asymptotically equivalent to the optimal bandwidthwhich
minimizes the oracle GBCV function assuming the true gradient
were known in the local linear estimator in Muller et al. (1987).
The idea of Henderson et al. (2015) is to use the local cubic esti-
mator of the derivative function as the true unknown derivative
function in the GBCV to select h.

Although we consider a nonparametric regression with multi-
ple regressors x = (x1, . . . , xd), without loss of generality, we only
focus on estimating the derivative of the first regressor, x1. If the
true partial derivative function m(1)

1 (x) were known, the optimal
bandwidth h0,opt , with deterministic orderO(n−1/(d+6)), minimizes
the leading term of population gradient-based least squares cross-
validation (GBCV) function for the first order derivative with re-
spect to x1:

CV 0(h) =


E

b1,ll(x; h) − m(1)

1 (x)
2

M(x)f (x)dx. (2.5)

It is known that h0,opt can be consistently estimated by ĥ0,opt which
minimizes the following oracle sample GBCV function, which is
infeasible:

CV (h) =
1
n

n
i=1


b1,ll(Xi; h) − m(1)

1 (Xi)
2

M (Xi) , (2.6)

with ĥ0,opt/h0,opt = 1 + oP(1), where b1,ll(x; h) is the local linear
estimator and M(·) is a weight function with bounded support
that trims out the data near the support boundary of x. It is also
known that a good proxy for the unknown true derivative function
m(1)

1 (x) is its local cubic estimator b1,lcb(x; h). Let ĥcubic minimize
the following sample GBCV function based on the local cubic
estimator, which is feasible:

CV cubic(h) =
1
n

n
i=1


b1,ll(Xi; h) − b1,lcb(Xi; h)

2 M (Xi) . (2.7)

It is shown in theory that, by a simple rescaling, h̃0,opt ≡

C1/(d+6)
K ĥcubic = OP(n−1/(d+6)) also asymptotically minimizes the

infeasible cross-validation function (2.6), i.e. h̃0,opt/h0,opt = 1 +

oP(1), under some regularity conditions that are similar to those
in Li and Li (2010). The constant CK depends only on the kernel
function. For Epanechnikov and Gaussian kernels, the correspond-
ing scaling constants are CEpan = 44/135 and CGaussian = 16/15
respectively. It is easy to verify that the assumptions (A1)–(A4)
in Li et al. (2003) are satisfied for our model, and that the av-
erage derivative estimator with h0,opt is asymptotically normally
distributed. Assumptions (A1), (A2), and (A4) are standard assump-
tions for nonparametric estimation. Assumption (A3) requires that
nh2p+2

→ 0 and nhd+2/ ln(n) → ∞. Substituting the rate of op-
timal bandwidth h0,opt ∼ n−1/(n+6) into the two restrictions in
Assumption (A3), we obtain a sufficient condition for Assumption
(A3), 1 − (2p + 2)/(d + 6) < 0. It is equivalent to 2p > d + 4,
where p is the order of polynomial and d is the dimension of re-
gressors. Since h̃0,opt/h0,opt = 1 + oP(1), according to Theorem
3.1 in Li and Li (2010), the average derivative estimators with both
stochastic h̃0,opt and deterministic h0,opt have the same asymptotic
normal distribution.



Download English Version:

https://daneshyari.com/en/article/5058323

Download Persian Version:

https://daneshyari.com/article/5058323

Daneshyari.com

https://daneshyari.com/en/article/5058323
https://daneshyari.com/article/5058323
https://daneshyari.com

