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h i g h l i g h t s

• A monitoring procedure is proposed to sequentially detect changes from short to long memory processes.
• The proposed sieve bootstrap method is robust for many types of innovation processes.
• The new procedure exhibits competitive power than the existing retrospective test.
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a b s t r a c t

This paper proposes a variance ratio statistic to monitor changes from short to long memory processes.
The asymptotic distribution is derived under the null hypothesis and the consistency of the monitoring
procedure is proven under the alternative hypothesis. A sieve bootstrap approximation method is
introduced to determine the critical values. Simulations indicate that the new procedure is quite robust
for many types of innovation processes and performs better than the existing retrospective test.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

During the past two decades, there is a growing body of ev-
idence showing that economic and financial time series display
changes in persistence. A number of testing procedures have been
suggested that aim to distinguish such behavior. For surveyswe re-
fer the reader to Kim (2000), Leybourne et al. (2007), Halunga et al.
(2009), Chen et al. (2012), among many others. All these tests stay
in the classical I(1)/I(0) framework. Sibbertsen and Kruse (2009),
Kruse and Sibbertsen (2012), Martins and Rodrigues (2014), and
Hassler and Meller (2014) have extended these results to the case
of long memory for many economic variables exhibiting long-
range dependencies that cannot be covered by the classical frame-
work. Hassler and Nautz (2008) showed that the key policy rate
of the European Central Bank has changed from a short memory
to a long memory series. Hassler and Scheithauer (2011) applied
a ratio test and a LBI test to detect the change point from short to

∗ Correspondence to: Department of Mathematics, Qinghai Normal University,
38 Wusi West Road, Xining, Qinghai, PR China. Tel.: +86 09716307622; fax: +86
09716318047.

E-mail address: chenzhanshou@126.com (Z. Chen).

long memory process. However, this work is based on retrospec-
tive test, that is, detecting change point in a fixed historical sample.
As many economic and financial data arrive steadily and cheaply,
the development of sequential tests is an important issue in change
point analysis.

In this paper, we propose a variance ratiomonitoring statistic to
sequentially detect changes from short to long memory processes.
The asymptotic distribution of the monitoring statistic is derived
under the null hypothesis and the consistency of the procedure
is proven under the alternative hypothesis. As the short memory
process withmany different types of innovation processes give the
same asymptotic distribution, size distortions are not negligible
in finite samples. To overcome this drawback, we propose a sieve
bootstrap test procedure. Monte Carlo simulations confirm the
validity of the proposed monitoring procedure.

2. Model and monitoring statistic

Let y1, y2, . . . , be an observed time series that can be
decomposed as

yt = µt + xt , t = 1, 2, . . . , (1)
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where µt = E(yt) is a deterministic component. For simplicity we
restrict the analysis to the constant components, namely, µt = µ.
An extension to polynomials in time would be possible. The term
xt is the random component. Similar to Hassler and Scheithauer
(2011), we assume xt satisfies usual invariance principles.

Assumption 1. Let xt be an I(0) process satisfying (as T → ∞)

T−1/2
[Ts]
t=1

xt ⇒ B(s), s ∈ [0, 1],

T−1
T

t=1

x2t
p

→ σ 2
0

where B(·) is a Brownianmotion, and ‘‘⇒’’ and ‘‘
p

→’’ stand forweak
convergence and convergence in probability, respectively.

Assumption 2. Let xt be an I(d) process satisfying (as T → ∞)

T−1/2−d
[Ts]
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where Bd(·) is a type I fractional Brownian motion with long
memory parameter 0 < d < 1.5, d ≠ 0.5.

We focus on the following change point problem: observe
sequences y1, y2, . . . , and detect whether a short to long memory
change occurs in model (1), namely, we want to test the null
hypothesis

H0 : yt ∼ I(0), t = 1, 2, . . . , T , (2)

against the alternative hypothesis

H1 : yt ∼ I(0), t = 1, . . . , k∗,

yt ∼ I(d), t = k∗
+ 1, . . . , T , 0 < d < 1.5, d ≠ 0.5 (3)

where T denotes the largest monitoring sample size and k∗ is
the unknown change point. We use the following variance ratio
statistic to sequentially detect changes from I(0) to I(d) until the
time horizon T .

ΓT (s) =

[Ts]
t=1


t

i=1
ε̂i

2

[Ts]
[Ts]
t=1

ε̂2
t

, (4)

where [x] denotes the largest integer smaller than x and ε̂i =

yi − ȳ[Ts] with ȳ[Ts] =
1

[Ts]


[Ts]
i=1 yi represents the OLS residuals from

the regression of yi on µ, i = 1, . . . , [Ts].

3. Main results

Theorem 1. If Assumption 1 holds, then under the null hypothesis H0
we have that (as T → ∞)
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Proof. Let t = [Tr], by Assumption 1 we have
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Then, the continuous mapping theorem gives that
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Theorem 2. Let Assumptions 1 and 2 hold, then under the alternative
hypothesis H1 we have that

ΓT (s) = Op(T 2d), s > k∗.

Proof. According to Assumptions 1 and 2 and the proof of
Theorem 1, if there occurs a change from short to long memory
at k∗ with k∗

= [Tu] < [Ts], and d > 0, then

T−1/2−d
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This indicates that if k∗ < [Ts], the numerator of the statistic ΓT (s)
diverges to infinity at a rate of T 2+2d, and the denominator of the
statisticΓT (s) diverges to infinity at a rate of T 2. This completes the
proof of Theorem 2.

Theorem 2 implies that we can reject the short memory null
hypothesis in favor of a change from short to long memory for
large values. Theorem 1 shows that the null distribution of the
monitoring statistic ΓT (s) depends on the unknown constant σ 2

0
and the long-run variance, which is hidden behind the Brownian
motion B(·). Furthermore, Merlevède et al. (2006) has shown that
many types of short memory sequences satisfy Assumption 1, but
our previous simulations indicate that different types of innovation
processes give very different finite sample critical values. The
sample size also has some influence on the critical values. In order
to overcome these drawbacks,weuse the following sieve bootstrap
method to approximate the asymptotic critical values of statistic
ΓT (s). Simulations in the next section show that the empirical size
can be controlled well via asymptotic critical values.

The steps of sieve bootstrap methodology are constructed as
follows:

Step 1. Having observed the samples y1, y2, . . . , y[Tτ ], compute
the OLS residuals x̂t = yt −

1
[Tτ ]


[Tτ ]

i=1 yi, and centered residuals

ε̂t = x̂t −
1

[Tτ ]


[Tτ ]

i=1 x̂i.
Step 2. We fit an autoregressive processes to the centralized

residuals

ε̂t = β1ε̂t−1 + β2ε̂t−2 + · · · + βp(T )ε̂t−p(T )
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