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h i g h l i g h t s

• We study two-sided matching models with search frictions.
• We develop a new approach to prove existence of steady-state equilibria.
• Two assumptions are shown to suffice for the existence of steady-state equilibria.
• Models with transferable and nontransferable utilities satisfy these assumptions.
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a b s t r a c t

We prove existence of steady-state equilibrium in a class of matching models with search frictions.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper contributes to the literature on the pairwise match-
ing of heterogeneous agents with search frictions. The basic struc-
ture of ourmodel is as in Shimer and Smith (2000) or Smith (2006):
There is a continuum of infinitely lived agents who are either
matched or unmatched at any moment in time. Meetings between
unmatched agents are generated by an exogenous search technol-
ogy. Upon meeting, agents play a bargaining game, determining
whether or not they become matched and, provided they do so,
their payoffs within the match. The main concern of the literature
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studying such models (surveyed in Smith, 2011) is the characteri-
zation of matching patterns in steady-state equilibria. Here we fo-
cus on the question of existence of steady-state equilibria.

Previously, this question has been addressed using two distinct
approaches. Shimer and Smith (2000) provide an existence argu-
ment applicable both to models with transferable and nontrans-
ferable utilities (see Smith, 2006), but requiring that – given the
agents’ decisions which matches to accept – there is a unique dis-
tribution of unmatched agents which maintains a steady state. To
obtain this uniqueness property, Shimer and Smith (2000) impose
the stringent assumption of a quadratic search technology.1 In con-
trast, the approach developed in Manea (2014a) accommodates

1 While Nöldeke and Tröger (2009) refine the existence argument from Shimer
and Smith (2000) to cover linear search technologies neither proof extends to
general search technologies, see Manea (2014a) for further discussion.
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general search technologies, but requires the uniqueness of equi-
librium payoffs in an auxiliary model in which the distribution of
unmatched agents searching for a partner is taken as given. While
Manea (2014a) establishes this uniqueness property for a model
with transferable utility, it is evident from Adachi (2003) that, in
general, this property fails with nontransferable utility.2

In the following we develop an approach to prove existence
of steady-state equilibrium which dispenses with the uniqueness
requirements in Shimer and Smith (2000) andManea (2014a). This
yields existence underminimal regularity conditions on the search
technology, akin to the ones introduced in Manea (2014a), and the
bargaining problem faced by the agents when deciding on amatch,
allowing for both transferable and nontransferable utilities.

2. Model

There is an exogenousmeasure θi > 0 of players of type i ∈ N =

{1, . . . , n}, or simply players i.3 Players are risk neutral, infinitely
lived, and discount payoffs at rate r > 0. Time is continuous. We
consider steady states in which a measure µi > 0 of players i is
unmatched and ameasure θi −µi > 0 is matched. The unmatched
players search: each unmatched player imeets unmatched players
j at Poisson rate ρij(µ) ≥ 0, where µ = (µ1, . . . , µn) ∈ Rn

++
.

Assumption 1. There exists a continuous function m : Rn
+

→

Rn×n
+ , satisfying (i) mij(µ) = mji(µ) for all µ ∈ Rn

+
and (ii)

mij(µ) = 0 whenever µi = 0, such that

ρij(µ) =
mij(µ)

µi
, ∀µ ∈ Rn

++
. (1)

Assumption 1 is similar to the assumption on meeting rates in
Manea (2014a). From Eq. (1), mij(µ) = ρij(µ)µi. Hence, mij(µ)
is the mass of players i who meet a player j per unit time, which
– as stated in part (i) of Assumption 1 – should equal the mass
mji(µ) = ρji(µ)µj of players jwhomeet a player i per unit time. As
the mass of meetings is assumed continuous in the distribution of
unmatched types, part (ii) of Assumption 1 is the natural boundary
condition that themass of meetings involving players i approaches
zero as µi vanishes (see Stevens, 2007).

When unmatched players i and j meet, they play a bargaining
game determining whether or not they form a match – enter a
relationship – and if they do, the flow payoffs that they obtain until
theirmatch dissolves. Eachmatch is dissolved randomly at Poisson
rate ω > 0. Separated partners return to the pool of unmatched
agents. If players do not agree to match, they instantaneously
return to the pool of unmatched agents.

If a fraction aij ∈ [0, 1] ofmeetings betweenunmatched agents i
and j results in a match, then the outflow of players i from the pool
of unmatched agents per unit time is


j∈N aijmij(µ). The inflow

of such players into the unmatched pool is given by the mass of
matched players imultiplied with the exogenous rate at which the
matches of such players are dissolved, i.e., ω(θi − µi). In a steady

2 For sufficiently low search frictions, equilibrium payoffs in Adachi’s model
are not uniquely determined whenever there are multiple stable matchings in
the frictionless marriage market serving as a benchmark for his analysis. Note
that there is nothing pathological about multiplicity of stable matchings in
frictionless marriage markets with nontransferable utility (cf. Roth and Sotomayor,
1990, Example 2.17).
3 We follow Manea (2014a) in considering a finite type space rather than a

continuumof types, thus sidestepping technicalities – but not, as discussed in Smith
(2011), the substantive issues – in Shimer and Smith (2000). In a similar vein, we
follow most of the literature in suppressing the measure theoretic considerations
discussed and resolved in Manea (2014b).

state, inflows and outflows must balance, delivering the balance
condition

ω (θi − µi) =


j∈N

aijmij(µ), ∀i ∈ N. (2)

Denote by vi the expected (continuation) value of anunmatched
player i and by vij the expected value of a player i conditional on
a meeting with a player j before the bargaining in the pair has
commenced. The flowpayoff of unmatched players is zero. Because
a player imeets a player j at rate ρij(µ) and such a meeting results
in a capital gain of gij = vij − vi, we have the value condition

rvi =


j∈N

ρij(µ)gij, ∀i ∈ N. (3)

Agents are free to refuse to enter a relationship, so that vi ≥ 0 and
gij ≥ 0. In the following v = (v1, . . . , vn) ∈ Rn

+
denotes the vector

of continuation values, the matrix g ∈ Rn×n
+ collects the gains gij,

and the set of feasible matching probabilities aij is

A = {a ∈ [0, 1]n×n
| aij = aji, ∀(i, j) ∈ N × N}. (4)

The matching probabilities aij and the gains gij are determined
by an equilibrium in the bargaining game between players i and
j. We treat the bargaining game as a ‘‘black box’’ by specifying a
bargaining correspondence E : Rn

+
⇒ A × Rn×n

+ , mapping vectors
of continuation values v into outcomes (a, g). The interpretation is
that (a, g) is an equilibrium outcome in the collection of bilateral
bargaining games induced by a vector of continuation values v if
and only if (a, g) satisfies the bargaining condition

(a, g) ∈ E(v). (5)

Assumption 2. The bargaining correspondence E : Rn
+

⇒ A ×

Rn×n
+ is upper hemicontinuous with E(v) non-empty, closed, and

convex-valued for all v ∈ Rn
+
. Further, there exists ḡ ∈ R+ such

that E(v) ⊂ A × [0, ḡ]n×n holds for all v ∈ Rn
+
.

Section 4 derives the bargaining correspondence for two
common specifications of the bargaining problem. In both cases,
Assumption 2 is satisfied.

Definition 1. A steady-state equilibrium is a tuple (µ, v, a, g) ∈

Rn
++

× Rn
+

× A × Rn×n
+ satisfying the balance condition (2), the

value condition (3), and the bargaining condition (5).

3. Result

Proposition 1. A steady-state equilibrium exists if Assumptions 1
and 2 hold.

The idea underlying the proof of Proposition 1 is as follows:We
may rewrite the balance condition (2) as

µi =

θi −

j∈N

aijmij(µ)

ω
, ∀i ∈ N (6)

and the value condition (3) as

vi =


j∈N
ρij(µ)gij

r
, ∀i ∈ N. (7)

Together with the bargaining condition (5) the right sides of (6)
and (7) define a mapping (µ, v, a, g) −→ (µ′, v′, a′, g ′). Fixed
points of this mapping coincide with steady-state equilibria. As-
sumptions 1 and 2 then ensure that the existence of steady-state
equilibria can be inferred from Kakutani’s fixed point theorem.
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