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h i g h l i g h t s

• Propose a new prediction model averaging (PMA) estimator.
• Prove that the PMA estimator is asymptotically optimal.
• Show that the PMA estimator has good performance in simulation.
• Demonstrate that PMA can lead to large gains in box office prediction accuracy.
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a b s t r a c t

This paper proposes a new estimator for least squares model averaging. We propose computing the
model weights by minimizing a prediction model averaging (PMA) criterion. We prove that the PMA
estimator is asymptotically optimal in the sense of achieving the lowest possible mean squared error.
In simulation experiments the PMA estimator is shown to have good finite sample performance. As an
empirical illustration, we demonstrate that using PMA to account for model uncertainty can lead to large
gains in box office prediction accuracy.
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1. Introduction

Hansen (2007) proposed the Mallows model average (MMA)
method that computes model weights by minimizing a Mallows
criterion. MMA can be interpreted as the model averaging ver-
sion of the Mallows’ Cp by Mallows (1973). Like its predecessor,
MMA requires a preliminary estimate of the variance of error term.
Hansen and Racine (2012) proposed a jackknife model averaging
(JMA) that is free of preliminary estimate and is capable of deal-
ing with heteroskedasticity. However, when the error term is ho-
moskedastic, JMA can be less efficient than MMA, especially when
sample size is small.1 In a recent paper, Zhang et al. (in press)
proposed a modified MMA based on Kullback–Leibler distance
(KLMA). KLMA is shown to be more efficient than MMA in small
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1 This has been demonstrated in the simulation section of Hansen and Racine
(2012).

sample size and an extendedversion is suggested for heteroskedas-
ticity.

In this paper, we propose a new model average estimator with
empirical weights computed through numerical minimization of
a prediction model averaging (PMA) criterion. Our criterion can
be seen as a model averaging version of the original prediction
criterion (PC) proposed by Amemiya (1980). Amemiya (1980)
demonstrated that PC does not rely on any preliminary estimates
and has a better prediction efficiency than Mallows’ Cp.

We prove that the PMA estimator is asymptotically optimal in
the sense of achieving the lowest possible mean squared error.
In simulation experiments the PMA estimator is shown to have
significant efficiency gains over other methods. As an empirical
illustration, we consider the case of using social media big data to
predict subsequent box office revenue of movies. We demonstrate
that using PMA to account for model uncertainty can lead to large
gains in box office prediction accuracy.

This paper continues with an introduction of the framework of
PMA in Section 2. Section 3 proves the asymptotic optimality of the
PMA estimator. In Section 4, we conduct simulation experiments.
Section 5 presents the empirical application.
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2. Prediction model averaging estimator

Let (yi, xi) : i = 1, . . . , n be a random sample, where yi and
xi = [xi1, xi2, . . .] are real-valued. Assume the data generating
process is yi = µi + ui, where µi =


∞

j=1 βjxij, E(ui|xi) = 0 and
E(u2

i |xi) = σ 2. The DGP in matrix form is y = µ + u, where all
three vectors are n × 1.

Consider a sequence of linear approximation models m =

1, 2, . . . ,M . The concept of approximation model can be vague.
In this paper, an approximation model m uses k(m) regressors
belonging to xi such that y = X (m)β(m)

+u(m), whereβ(m) is a k(m)
×

1 coefficient in model m. Let P (m)
= X (m)(X (m)⊤X (m))−1X (m)⊤ be

the projection matrix. The least squares estimate of µ from model
m is µ̂

(m)
= P (m)y.

Let w =

w(1), . . . , w(M)

⊤ be a weight vector in the unit
simplex in RM ,

HM ≡


w ∈ [0, 1]M :

M
m=1

w(m)
= 1


.

Define the model average estimator of µ as

µ(w) ≡

M
m=1

w(m)µ̂
(m)

=

M
m=1

w(m)P (m)y = P(w)y,

where P(w) ≡
M

m=1 w(m)P (m) is theweighted average projection
matrix.

We propose the prediction model averaging (PMA) criterion:

PMAn(w) =

y − µ(w)

⊤
y − µ(w)

 
n + k(w)

n − k(w)


, (1)

where k(w) ≡
M

m=1 w(m)k(m) is the effective number of parame-
ters. PMA can be understood as the model averaging version of the
prediction criterion by Amemiya (1980). Like most model selec-
tion criteria and model averaging criteria, PMA balances between
the fit and the complexity of a model. Criterion (1) can be used to
calculate the empirical weight vector ŵ, in which

ŵ = argmin
w∈HM

PMAn(w).

The Mallows’ model average (MMA) criterion proposed by
Hansen (2007) is

MMAn(w) =

y − µ(w)

⊤
y − µ(w)


+ 2σ 2k(w). (2)

The empirical weights ŵ can be selected byminimizing (2) subject
to w ∈ HM . Note that the penalty term includes an unknown σ 2

that must be replaced by a sample estimate (usually provided by
the largest model).

The MMA estimator is a two-step estimator since a sample
estimate of σ 2 must be provided prior to estimation. In contrast,
the PMAestimator is a continuous updating estimator that requires
only one step of calculation. Estimating ŵ from the MMA criterion
with constraints is a classic quadratic programmingproblem,while
estimating ŵ by the PMA estimator is a convex optimization
problem.2

Jackknife model averaging (JMA) (Hansen and Racine, 2012) is
also known as leave-one-out cross-validation model averaging. As
its name indicates, JMA requires the use of the jackknife residuals
for the average estimator. The jackknife residual vector for model
m can be convenientlywritten as û(m)

J = D(m)û(m), where û(m) is the

2 Note that convex optimization usually requires slightlymore computation time
than quadratic programming.

least squares residual vector and D(m) is the n × n diagonal matrix
with the ith diagonal element equal to (1 − h(m)

i )−1. The term h(m)
i

is the ith diagonal element of the projection matrix P (m). Define
an n × M matrix that collects all the jackknife residuals, in which
ÛJ =


û(1)
J , . . . , û(M)

J


. The least squares cross-validation criterion

for JMA is simply

CVn(w) =
1
n
w⊤Û⊤

J ÛJw with ŵ = argmin
w∈HM

CVn(w).

The Kullback–Leibler distance based model averaging (KLMA)
method proposed by Zhang et al. (in press) for the homoskedastic-
ity case can be expressed as

KLMAn(w) =

y − µ(w)

⊤
y − µ(w)


+ 2σ̂ 2

L


n − kL

n − kL − 2


k(w),

where σ̂ 2
L is the estimated σ 2 by the largest model and kL is

its number of parameters. We can see that KLMA is a modified
MMA with more penalty on complexity. As Zhang et al. (in press)
demonstrated, KLMA is more efficient than MMA in small sample
size and is asymptotically optimal like MMA in a similar fashion.
Zhang et al. (in press) also include an extended KLMA for
heteroskedasticity.

3. Asymptotic properties

In this section, we demonstrate the asymptotic optimality of
the PMA estimator by showing that it achieves the lowest possible
mean squared error as n → ∞.

Define the average mean squared error as Ln(w) ≡

µ(w) −

µ
⊤

µ(w) − µ

and the conditional average mean squared error

as Rn(w) ≡ E

Ln(w)|X


. We assume the following:

Assumption 1. For some fixed integer 1 ≤ G < ∞, we have
E(|ui|

4G
|xi) ≤ κ < ∞.

Assumption 2. As n → ∞, ξ−2G
n M

M
m=1


Rn(w0

m)
G

→ 0, where
ξn = infw∈HM Rn(w) and w0

m is an M × 1 vector of which the mth
element is one and the others are zeros.

Assumption 3. As n → ∞, k(m)
→ ∞ and k(m)/n → 0 for allm.

Assumption 1 is a bound condition on the conditional moments
of the error term. Assumption 2 is the convergence condition.
Assumption 3 states that as n goes to infinity, k(m) goes to infinity
at a slower rate for m = 1, . . . ,M . The following theorem
demonstrates the asymptotic optimality of the PMA estimator.

Theorem 1. Let Assumptions 1, 2, and 3 hold. Then, as n → ∞

Ln(ŵ)

Ln(wopt)

p
−→ 1,

where

wopt = arg inf
w∈HM

Ln(w).

Theorem 1 states that by using the empirical weight vector ŵ,
the mean squared error is asymptotically equivalent to the lowest
possible mean squared error. This implies that the PMA estimator
is asymptotically optimal in the class of model average estimators
where the weight vector belongs to the set HM .

Remark. The proof of Theorem 1 is a straightforward application
of the same technique demonstrated in Li (1987) and Wan et al.
(2010). See the appendix file for a detailed proof (see Appendix A).
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