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• We investigate the performance of two versions of the modified harmonic mean.
• An unobserved components model is fitted using US and UK inflation data.
• The one based on the complete-data likelihood has a substantial finite sample bias.
• The version based on the observed-data likelihood works well.
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a b s t r a c t

The modified harmonic mean is widely used for estimating the marginal likelihood. We investigate the
empirical performance of two versions of this estimator: one based on the observed-data likelihood and
the other on the complete-data likelihood. Through an empirical example using US and UK inflation, we
show that the version based on the complete-data likelihood has a substantial bias and tends to select the
wrong model, whereas the version based on the observed-data likelihood works well.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The marginal likelihood or marginal data density is a widely
used Bayesian model selection criterion and its estimation has
generated a large literature. One popular method for its estimation
is the modified harmonic mean estimator of Gelfand and Dey
(1994) (for recent applications in economics, see, e.g., Koop and
Potter, 2010; Liu et al., 2011; Lanne et al., 2012; Bianchi, 2013). For
latent variable models such as state space and regime-switching
models, this estimator is often used in conjunction with the
complete-data likelihood—i.e., the joint density of the data and
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the latent variables given the parameters. Recent examples include
Berg et al. (2004), Justiniano and Primiceri (2008) and Jochmann
et al. (2010).

This paper first introduces a new variant of the unobserved
components model where the marginal likelihood can be com-
puted analytically. Then, through a real data example we show
that the Gelfand–Dey estimator based on the complete-data like-
lihood has a substantial finite sample bias and tends to select the
wrong model, whereas the estimator based on the observed-data
likelihood works fine. This finding is perhaps not surprising as
the complete-data likelihood is typically very high-dimensional,
which makes the corresponding estimator unstable. Our results
complement findings in Li et al. (2012) and Chan and Grant (forth-
coming),who argue against the use of the complete-data likelihood
in a related context of computing the deviance information crite-
rion.
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The rest of this paper is organized as follows. Section 2 discusses
the Bayes factor and the Gelfand–Dey estimators. Section 3
introduces the unobserved components model and outlines the
analytical computation of the marginal likelihood. Then, using
US and UK CPI inflation data, we compare the two Gelfand–Dey
estimators with the analytical results. Section 4 concludes.

2. Bayes factor and marginal likelihood

In this section we give an overview of Bayesian model compar-
ison and discuss the method of Gelfand and Dey (1994) for esti-
mating the marginal likelihood. To set the stage, suppose we wish
to compare a collection of models {M1, . . . ,MK }. Each modelMk is
formally defined by a likelihood function p(y | θk,Mk) and a prior
on the model-specific parameter vector θk denoted by p(θk | Mk).
One popular Bayesian model comparison criterion is the Bayes fac-
tor in favor ofMi againstMj, defined as

BFij =
p(y | Mi)

p(y | Mj)
,

where p(y | Mk) =

p(y | θk,Mk)p(θk | Mk)dθk is the marginal

likelihood under model Mk, k = i, j, which is simply the marginal
data density under model Mk evaluated at the observed data y.
Hence, if the observed data are likely under the model, the asso-
ciated marginal likelihood would be ‘‘large’’ and vice versa. It fol-
lows that BFij > 1 indicates evidence in favor of model Mi against
Mj, and the weight of evidence is proportional to the value of the
Bayes factor.

In fact, the Bayes factor is related to the posterior odds ratio
between the two models as follows:
P(Mi | y)
P(Mj | y)

=
P(Mi)

P(Mj)
× BFij,

where P(Mi)/P(Mj) is the prior odds ratio. If both models are
equally probable a priori, i.e., p(Mi) = p(Mj), the posterior odds
ratio between the two models is then equal to the Bayes factor. In
that case, if, for example, BFij = 20, thenmodelMi is 20 timesmore
likely thanmodelMj given the data. For a more detailed discussion
of the Bayes factor and its role in Bayesian model comparison, see
Koop (2003) or Kroese and Chan (2014).

The Bayes factor therefore has a natural interpretation. More-
over, using it to compare models, we need only to obtain
the marginal likelihoods of the competing models. One popular
method for estimating the marginal likelihood of a given model
p(y) – we suppress the model index from here onwards for no-
tational convenience – is due to Gelfand and Dey (1994). Specifi-
cally, they realize that for any probability density function f with
support contained in the support of the posterior density, we have
the following identity:

E


f (θ)
p(θ)p(y | θ)

 y =


f (θ)

p(θ)p(y | θ)

p(θ)p(y | θ)

p(y)
dθ

= p(y)−1, (1)

where the expectation is takenwith respect to p(θ | y) = p(θ)p(y |

θ)/p(y). Therefore, one can estimate p(y) using the following esti-
mator:

GDo =


1
R

R
i=1

f (θi)

p(θi)p(y | θi)

−1

, (2)

where θ1, . . . , θR are posterior draws. Note that this estimator is
simulation consistent in the sense that it converges to p(y) in prob-
ability as R tends to infinity, but it is not unbiased—i.e., E(GDo) ≠

p(y) in general.

Geweke (1999) shows that if the tuning function f has tails
lighter than those of the posterior density, the estimator in (2) then
has a finite variance. One such tuning function is a normal approx-
imation of the posterior density with tail truncations determined
by asymptotic arguments. Specifically, letθ andQθ denote the pos-
terior mean and covariance matrix respectively. Then, f is set to be
the N (θ,Qθ) density truncated within the region

{θ ∈ Rm
: (θ −θ)′Q−1

θ (θ −θ) < χ2
α,m},

where χ2
α,m is the (1 − α) quantile of the χ2

m distribution and m is
the dimension of θ.

For many complex models where the likelihood p(y | θ) cannot
be evaluated analytically, estimation is often facilitated by data
augmentation. Specifically, the model p(y | θ) is augmented with
a vector of latent variables z such that

p(y | θ) =


p(y, z | θ)dz =


p(y | z, θ)p(z | θ)dz,

where p(y, z | θ) is the complete-data likelihood and p(y | z, θ)
denotes the conditional likelihood. To avoid ambiguity, p(y | θ) is
then referred to as the observed-data likelihood or the integrated
likelihood.

One advantage of this augmented representation is that the
complete-data likelihood p(y, z | θ) = p(y | z, θ)p(z | θ) is easy to
evaluate by construction. Given this latent variable representation,
one canuse a similar argument as in (1) to obtain another estimator
of the marginal likelihood p(y) that avoids the evaluation of the
observed-data likelihood p(y | θ):

GDc =


1
R

R
i=1

f (θi, zi)
p(y, zi | θi)p(θi)

−1

, (3)

where (θ1, z1), . . . , (θR, zR) are posterior draws from the aug-
mented model p(θ, z | y) and f is a tuning function.

However, the variance of GDc is generallymuch larger than that
of GDo. Moreover, the former estimator is expected to perform
poorly in general—the key difficulty is to obtain a suitable tuning
function f that is typically very high-dimensional. In fact, in the
next section we give an example where we can compute the
marginal likelihood analytically.We show that GDc gives estimates
that are quite different from the analytical results.

3. Application: estimating trend inflation

In this section we consider a version of the unobserved
componentsmodelwhere itsmarginal likelihood can be computed
analytically. The analytical result is then compared to the estimates
obtained by the method of Gelfand and Dey (1994) based on
the complete-data and observed-data likelihoods. We use this
example to investigate the empirical performance of the two
estimators.

3.1. Unobserved components model

Consider the following unobserved components model:

yt = τt + εt , (4)
τt = τt−1 + ut , (5)

where εt ∼ N (0, σ 2) and ut ∼ N (0, gσ 2) are independent
for a fixed g , with initial condition τ1 ∼ N (0, σ 2Vτ ) for a fixed
Vτ . Note that here the error variance of the state equation (5) is
assumed to be a fraction – controlled by g – of the error variance
in the measurement equation (4). The states are the unobserved
components τ = (τ1, . . . , τT )

′ and the only parameter is σ 2. In the
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