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h i g h l i g h t s

• Symmetry important economically and statistically.
• Propose bootstrap procedure for nonparametric test of symmetry.
• Demonstrate consistency of bootstrap procedure.
• Testing approach displays impressive performance.
• Empirical examples highlight the appeal of this test in practice.
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a b s t r a c t

This paper proposes a bootstrap algorithm for testing symmetry of a univariate density. Validity of the
bootstrap procedure is shown theoretically as well as via simulations. Three empirical examples demon-
strate the versatility of the test in practice.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Symmetry is of interest in many areas of econometrics and
statistics. For the linear regression model, Bickel (1982) demon-
strated that if the conditional density function of the disturbance
is symmetric, the regression coefficients can be estimated adap-
tively, implying attainability of efficiency equivalent to that of
the maximum likelihood estimator. Symmetry is also used as an
identification condition for the semiparametric sample selection
model; Chen and Zhou (2010) proposed a

√
n-consistent estimator

of the regression coefficients only through joint symmetry. Polonik
and Yao (2000) used symmetry to construct predictive regions
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for nonlinear time series. Lastly, a key identification condition in
the standard stochastic frontier regression model is that the com-
posed error term is asymmetric (Waldman, 1982; Simar and Wil-
son, 2010).1

Beyond the statistical benefits of symmetry, there exist an array
of economic settings where symmetry (or asymmetry) provides
key insights. For example, Christofides and Stengos (2001, 2002)
empirically study the symmetry of the wage-change distribution.
During periods of high price inflation, real wages can decrease
(even if nominal wages increase) if shocks are symmetric, leading
to a symmetric cross-sectional nominal wage-change distribution.
However, if nominal wages are rigid, then the cross-sectional
nominal wage change distribution is likely asymmetric.

1 See Li (1996a) for an example where the composed error term can be
symmetric.
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Testing symmetry can be implemented within the confines of a
nonparametric test to avoid issues of misspecification. To that end,
several tests of symmetry exist. Fan and Gençay (1995) provide
a nonparametric test of symmetry of the disturbances in a linear
regression model. Ahmad and Li (1997) provide a kernel based
test of symmetry for both a univariate and bivariate density, as
well as an alternative test in the regression setting (as in Fan and
Gençay, 1995). Each of the available kernel based tests of symmetry
currently rely on the asymptotic distribution to conduct inference.
It is commonly known that kernel based tests tend to converge
slowly towards their asymptotic distribution; see Li and Wang
(1998, Table 1) or Henderson and Parmeter (2015, Fig. 4.6).

As an alternative to a kernel based test, characteristic function-
based tests can help circumvent the slow convergence of kernel
based tests. Given that these types of tests donot rely on smoothing
the data, gains in convergence rates can be achieved. To that end,
we mention that the conditional symmetry test of Su and Jin
(2005) could be appropriately modified for our scenario; when the
conditioning variables are abstract, their characteristic function
based test is the same as that of Su (2006) in the univariate setting.

That being said, within the context of kernel based tests, a
known remedy for slow convergence is to deploy a bootstrap pro-
cedure. An appropriate bootstrap can provide asymptotic refine-
ments (Li andWang, 1998, Thm. 3) and lead to improved inference
in finite samples. The present work considers the kernel based test
of Ahmad and Li (1997) for which we propose a bootstrap algo-
rithm and prove consistency of this approach. As an anonymous
referee correctly notes, the bootstrap we propose is similar to that
of Su and Jin (2005).2 The gains from the proposed bootstrap are
demonstrated through a set of Monte Carlo simulations as well as
three empirical examples.

2. The nonparametric symmetry test of Ahmad and Li (1997)

Our interest is in the shape of the unknown probability density
function f (·). The null hypothesis for the test of symmetry is

H0 : f (x) = f (−x)

almost everywhere versus the alternative

H1 : f (x) ≠ f (−x)
on a set with positive measure. Note here that the null hypothesis
focuses on the classic case of symmetry about the origin. If one
was interested in the less common notion of symmetry about
a particular point, everything will hold suit if the data are re-
centered around that point.

To test symmetry, Ahmad and Li (1997) use the integrated
square error (ISE) metric, resulting in

ISE (f , f−) =


x
[f (x) − f (−x)]2 dx.

Note that when the density is symmetric f (x) = f (−x) and
ISE (f , f−) = 0. ISE (f , f−) > 0 otherwise, making it a proper met-
ric for inference.

Ahmad and Li (1997) show that their test statistic for the null
hypothesis of symmetry is

Jn = nh1/2
ISEnσn

d
→N (0, 1) ,

where

ISEn =
1

n (n − 1) h

n
i=1

n
j=1
j≠i


k

xi − xj

h


− k


xi + xj

h



2 The bootstrap procedure in Su and Jin (2005) uses the same steps (albeit with
different estimators) as that proposed here.
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ISEn does not contain the center term, i = j; omitting this term
eliminates a non-zero bias from the asymptotic distribution. This
is common in kernel based testing (Li, 1996b).

3. The bootstrap symmetry test

We first detail the assumptions needed to establish consistency
of a bootstrap test for symmetry.

Assumption 3.1. k (·) is a bounded, symmetric density function
such that |u|k(u) → 0 as |u| → ∞, where u ≡

xi−x
h . Further,

uk(u)du = 0 and

u2k(u)du < ∞.

Assumption 3.2. The density f (·) is bounded and continuous onR.

Assumption 3.3. As n → ∞, h → 0 and nh → ∞.

Assumptions 3.1–3.3 are standard. We use a second-order
kernel with bandwidth decaying to zero at the optimal rate. Given
the lack of consensus regarding optimal bandwidth choice for
testing, it is recommended that a variety of bandwidths are used
empirically to demonstrate robustness of one’s conclusions. Here,
Assumption 3.3 is simply maintained to ensure proper behavior of
the bias of the kernel based test. Ahmad and Li (1997) recommend
undersmoothing empirically. We will not need to do so here.

A bootstrap test can be obtained by randomly resampling
with replacement from the expanded set {−x1, −x2, . . . ,−xn,
x1, x2, . . . , xn} = Zn. Z∗

n will denote the bootstrap sample. Note
that we are resampling n and not 2n observations and we use the
n notation for posterity. The bootstrap version of ISEn is given as

ISE∗

n =
1

n(n − 1)h2

n
i=1

n
j=1
j≠i
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x∗
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j
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=
2

n2h
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n
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H(z∗

i , z
∗
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where we will argue that H(z∗

i , z
∗

j ) is a second-order degenerate
U-statistic. The bootstrap version of the variance term is obtained
as

σ 2∗
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We are now in a position to establish the following lemma.

Lemma 3.1. LetJ∗n = nh1/2ISE∗

n/σ ∗
n . Under Assumptions 3.1–3.3we

haveJ∗n |Zn → N(0, 1)

in distribution.
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