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• Problems of covariate measurement error and endogeneity are jointly analyzed.
• Reducing measurement error may worsen finite sample performance of IV estimators.
• Stronger instruments diminish the sensitivity of the bias to measurement error.
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a b s t r a c t

The effects of improving covariate measurement are investigated when the covariate is endogenous even
in the absence of measurement error. Reducing measurement error can exacerbate the finite sample bias
of Two-Stage Least Squares. An application reveals this is of practical importance.
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1. Introduction

Applied researchers often confront the twin problems of covari-
ate measurement error and endogeneity of the covariate even in
the absence of measurement error. The typical solution to covari-
ate measurement error is instrumental variable (IV) estimation.
The typical solution to endogeneity (of an accurately measured co-
variate) is also IV estimation. This, then, begs the question: if a
researchermust resort to IV estimation even in the absence ofmea-
surement error, is there a gain to improving covariate measure-
ment?

This is an important question for applied researchers as signif-
icant effort is often devoted to improving covariate measurement
even though the covariate is (presumed) endogenous even in the
absence of measurement error. For example, when assessing the

∗ Correspondence to: Department of Economics, Box 0496, Southern Methodist
University, Dallas, TX 75275-0496, United States. Tel.: +1 214 768 3269; fax: +1 214
768 1821.

E-mail address:millimet@smu.edu.

impact of environmental regulatory stringency on outcomes such
as firm productivity, firm location, and trade flows, considerable
effort is allocated to measuring stringency (Levinson, 2001; Brunel
and Levinson, 2013; Sauter, 2014). However, stringency is likely to
be correlated with unobservables influencing such outcomes, ren-
dering Ordinary Least Squares (OLS) biased even in the absence of
measurement error (Millimet and Roy, forthcoming). Similarly, in
the returns to education literature, effort is often devoted to cir-
cumventingmeasurement error in self-reported schooling through
the use of administrative or transcript data (e.g. Battistin et al.,
2014). Again, though, schooling is presumed endogenous even in
the absence of measurement error due to omitted innate ability.
Other examples abound, from constructing national or subnational
indices of employment protection legislation or measures of cor-
ruption to firm-level measures of capital stock to individual-level
attributes such as permanent income or total consumption.

Here, it is shown that the finite sample bias of the Two-Stage
Least Squares (TSLS) estimator may be exacerbated by improve-
ment in covariate measurement. Moreover, the sensitivity of the
bias to the degree of measurement error – in an absolute sense –
is greater when the instruments are weak (another problem often
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confronted in practice). In sum, researchers using small samples
should be cognizant of the potential harm, or at least the possible
lack of gain, created by improving the accuracy of covariates that
are endogenous even in the absence of measurement error. One
should avoid interpreting this result as a rationale for ignoring co-
variate accuracy. Instead, this points to a more productive use of
researcher effort: measurement of strong instruments.

2. Bias

2.1. Preliminaries

Consider the following data generating process (DGP)

y = x∗β + ε (1)

x = x∗
+ υ (2)

x∗
= zπ + η (3)

where y is a N × 1 vector of a dependent variable, x∗ is (for
simplicity) a N × 1 vector of a correctly measured independent
variable, x is a N × 1 vector of the observed independent variable,
β is a scalar parameter of interest, z is aN×Lmatrix of instrumental
variables (L ≥ 1), π is a L×1 vector of parameters, and ε, υ , and η
areN×1 vectors of mean zero error terms.1 The covariancematrix
of the errors, Σ , is given by

Σ =

σ 2
ε 0 σεη

σ 2
υ 0

σ 2
η

 .

In addition, assume that υ is classical measurement error such that
E[x∗′υ] = E[z ′υ] = 0.

The model in (1)–(3) can be written more compactly as

y = xβ +ε (4)
x = zπ +η (5)

whereε ≡ ε − βυ andη ≡ η + υ . Because (4) and (5) comprise
a typical system of equations, all the well known results from the
literature onOLS and TSLS continue to hold. Specifically, fromHahn
and Hausman (2002) and Bun and Windmeijer (2011), the bias of
the OLS estimator of β from a regression of y on x is approximately

E[βOLS] − β ≈
σεη
σ 2
x

. (6)

Nagar (1959) and Bun and Windmeijer (2011) provide two
different approximations of the bias of the TSLS estimator of β
using z to instrument for x. These are given by

E[βTSLS] − β ≈
σεη

π ′z ′zπ
(L − 2) (7)

E[βTSLS] − β ≈
σεη

σ 2
η + σ 2

υ


L

µ + L
−

2µ2

(µ + L)3


, (8)

respectively, where µ is the concentration parameter (Basmann,
1963) given by

µ ≡
π ′z ′zπ

σ 2η .

1 Utilizing the Frisch–Waugh–Lovell Theorem, other exogenous covariates can be
thought of as having been partialled out. Future research might consider multiple
endogenous variables, although it seems unlikely that meaningful conclusions
could be obtained under general correlation structures for the structural and
measurement errors. Moreover, many empirical applications are assumed to
contain at most one endogenous regressor.

Table 1
Simulation details.

L = 3 σ 2
η = 1 σ 2

x∗ = σ 2
x − σ 2

v

N = 100 σ 2
υ =

(1−ϕ)( µ
N +1)

1−(1−ϕ)( µ
N +1)

σ 2
η σ 2

ε = β2σ 2
x∗

β = 0.1 σ 2
x = σ 2η 

µ

N + 1


σεη = ρεησεση

The Nagar approximation requires µ → ∞ as N → ∞, while the
Bun and Windmeijer approximation requires that max{µ, L} →

∞ as N → ∞.
Utilizing the following approximations

σ 2
x ≈ σ 2η

µ

N
+ 1


ϕ ≡ 1 −

σ 2
v

σ 2
x

≈ 1 −
σ 2

v

σ 2η 
µ

N + 1


where ϕ is the reliability ratio, we can rewrite the three bias ap-
proximations in terms of the reliability ratio and the concentration
parameter as

BiasOLS ≈ β(ϕ − 1) +
σεη

σ 2
η Γ0

1
µ

N + 1
(9)

BiasNagar ≈ β(ϕ − 1)
µ

N
+ 1


Γ1 +

σεη

σ 2
η Γ0

Γ1 (10)

BiasBW ≈ β(ϕ − 1)
µ

N
+ 1


Γ2 +

σεη

σ 2
η Γ0

Γ2 (11)

where

Γ0 ≡ 1 +
(1 − ϕ)


µ

N + 1


1 − (1 − ϕ)


µ

N + 1


Γ1 ≡
L − 2

µ

Γ2 ≡
L

µ + L
−

2µ2

(µ + L)3
.

Note, each bias expression in (9)–(11) contains two terms. The
first term in each vanishes in the absence of measurement error
(ϕ → 1). The second term in each converges to the usual finite
sample bias of OLS or TSLS when a correctly measured covariate is
endogenous.

2.2. Covariate accuracy

Of interest here is the effect of reducing the (classical)
measurement error in x on the properties of OLS and TSLS when
σεη ≠ 0. Altering the reliability ratio impacts both terms in each
bias expression in (9)–(11). Moreover, a change in the reliability
ratio need not impact the two terms in the same direction.

To illustrate the change in bias, Figs. 1–4 plot the Nagar bias
and Bun–Windmeijer bias (in absolute value) from (10) and (11),
respectively, for selected parameter values. The simulation details
are given in Table 1.

L is set to three such that the expectation exists. The variance of
ε is chosen such that the population R2 in (1) is 0.5. The correlation
coefficient between ε andη, ρεη , reflects the degree of endogeneity
of x∗. Across Figs. 1–4, ρεη varies from 0.5, 0.1, −0.1, and −0.5,
respectively. Within each figure, the reliability ratio, ϕ, is varied
from 0.2 to one. In addition, five different values of instrument
strength are utilized: µ/L ∈ {0.1, 0.33, 1, 2, 5}. The ratio, µ/L,
is the population analog of the first-stage F-statistic (Bound et al.,
1995; Stock et al., 2002).

Four salient points are illustrated. First, as seen in Figs. 1 and 2,
the bias may be zero in the presence of measurement error. This
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