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h i g h l i g h t s

• I study an asymmetric stochastic contest model.
• Players differ in their ability to make debt.
• The unique equilibrium outcome and payoffs are characterized in closed form.
• A higher debt level of a player changes the bankruptcy risk of both players.
• The similarity of the equilibrium to other contest models is explored.
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a b s t r a c t

I study the impact of asymmetric loss constraints on risk-taking behavior in the contest model of Seel and
Strack (2013). I derive the unique Nash equilibrium outcome, the equilibrium payoffs and comparative
statics about the bankruptcy risk.
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1. Introduction

A contest is a simple and widely used mechanism in which
each player’s payoff is determined by his rank in a peer group. The
main focus of the literature on contests has been on the trade-off
between a higher effort cost and a higher chance of winning; see,
e.g., Hillman and Samet (1987), Baye et al. (1996), or Siegel (2009,
2010). Applications of such contests include patent races, political
campaigns, litigation, rent seeking, procurement and so forth.

In many contests in the financial industry, however, risk-taking
is an important determinant of contest success. For example, think
about competitions between private equity funds or mutual funds
inwhich only the best performing funds receive substantial capital
inflow in the next period or bonus payments for fund managers or
CEO’s if they outperform their peers. In order to focus on the risk-
taking aspect, Seel and Strack (2013) proposed a contest model
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in which each player decides when to stop a privately observed
Brownian motion and the player who stops his process at the
highest value receives a prize. Thus, waiting longer entails the risk
that the value of the process decreases.

During the last years, different versions of the model have been
considered in the finance literature. For instance, Feng and Hob-
son (2015, in press-a,b) study the effects of regret-based agents,
bidding caps, a random initial value, and different stochastic pro-
cesses on the equilibrium outcome. In another interesting con-
tribution, Fang and Noe (2015) establish an equivalence result
between the stochastic contest model and a static model in which
players choose a cumulative distribution function subject to a ca-
pacity constraint on the expected value. Moreover, they introduce
multiple prizes and incomplete information and they analyze the
probability of selecting more able contestants with this contest.

This paper contributes to the recent literature by focusing on
another factor which influences risk-taking and which occurs in
many applications in finance: contestants differ in their credit
line, i.e., the maximal amount of money which they can lose.
This introduces additional technical difficulties, since there are
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no simple boundary conditions as in Seel and Strack (2013); the
equivalent model of Fang and Noe (2015) facilitates the analysis.

2. The model

I consider the following version of the model analyzed in Seel
and Strack (2013). Each of two agents i = 1, 2 privately observes
the realization of the stochastic process

X i
t = x0 + σBi

t ,

where x0 > 0 denotes the starting value and the random terms
σBi

t are independent Brownian motions scaled by σ ∈ R+.
Each player chooses a stopping time τ i. The agents’ stopping

decision until time t has to beF i
t -measurable, whereF i

t = σ({X i
s :

s < t}) is the sigma algebra induced by the possible observations
of the process X i

s before time t . Additionally, I restrict stopping
times in two ways: First, they should have finite expectation, i.e.,
E(τ i) < ∞. The second restriction is the loss constraint. Without
loss of generality, assume that player 2 has a tighter constraint and
that he has to stop once the process hits zero, i.e., τ i

≤ inf{t ∈ R+ :

X i
t = 0} a.s.. Player 1 can make higher losses and thus he faces the

weaker constraint τ i
≤ inf{t ∈ R+ : X i

t = x} a.s., where x < 0 is
the difference in the loss constraints.

Note that a stopping strategy induces a distribution over the
values of the process at the stopping time, which I denote by
Fi(x) = P(X i

τ i ≤ x). The player who stops his process at the
highest value wins a prize, which I normalize to one. Ties are
broken randomly. Formally, the payoff/winning probability is

πi = 1
{X i

τ i
>X j

τ j
}
+

1
2
1

{X i
τ i

=X j
τ j

}
.

Each player maximizes the above winning probability.
Fang and Noe (2015) show that the stochastic contest model

has the same Nash equilibrium distributions Fi as amodel in which
players choose their cumulative distribution functions subject to
the constraint that the expected value of the underlying random
variable is xi0. Including the loss constraints, player 2 thus faces
the choice of a cumulative distribution F2 on [0, ∞) subject to the
capacity constraint (expected value equals x0). Player 1 chooses
a cumulative distribution F1 on [x, ∞) subject to the capacity
constraint,where−x > 0 is the amount of additionalmoneywhich
player 2 can lose.

3. Equilibrium characterization

In this section, I determine the Nash equilibrium of the contest.
In equilibrium, player 1 must choose a cumulative distribution
function F1 which solves

max
dF1≥0


F2(x)dF1(x) s.t.


∞

x
xdF1(x) = x0

and F2 must solve

max
dF2≥0


F1(x)dF2(x) s.t.


∞

0
xdF2(x) = x0.

The constraint captures the available capacity (the expected value
should be x0). The following proposition characterizes the Nash
equilibrium of the game:

Proposition 1. In any Nash equilibrium, the cumulative distribution
functions are

F1(x) =


0 if x < x,
α if x ∈ [x, 0),

α + (1 − α)
x
x

if x ∈ [0, x],

1 if x > x,

and

F2(x) =


0 if x < 0,

β + (1 − β)
x
x

if x ∈ [0, x],

1 if x > x,

where

α =

x0 −


x20 − 2x0x

2x − x0 −


x20 − 2x0x

,

β =
−x

x0 +


x20 − 2x0x − x

,

and

x = x0 +


x20 − 2x0x.

Proof. The proof is split into four steps: verifying that both
functions are cumulative distributions, the capacity constraints,
the best-response properties and uniqueness.

Step 1 (CumulativeDistribution Function): To be a cumulative
distribution, F1 and F2 have to be non-decreasing, right-continuous
functions with limx→−∞ Fi = 0 and limx→∞ Fi = 1 for i = 1, 2.
Clearly, these conditions are satisfied if α ∈ (0, 1) and β ∈ (0, 1).
To see that α ∈ (0, 1), note that the numerator is negative since

x0 −


x20 − 2x0x < x0 −


x20 = 0. The denominator is also

negative and has a larger absolute value than the numerator since
2x − x0 < x0. Thus, we obtain α ∈ (0, 1). Since both the numer-
ator and denominator in the expression of β are positive with the
denominator being larger than the numerator, we have β ∈ (0, 1).

Step 2 (Capacity Constraint): To verify the capacity constraint,
I calculate the expected value and equate it to the constraint for
both F2 and F1 in order to see for which values the equality holds. x

0
xdF2(x) =

(1 − β)x
2

=


1 −


−x
x−x


x

2
=

x2

2(x − x)
= x0.

Since x > x0, this yields x = x0 +


x20 − 2x0x. Thus, β =

−x
x−x =

−x

x0+

x20−2x0x−x

, i.e., the equality holds for the parameters given in

the proposition.
For the first distribution, calculating the expected value setting

it equal to x0 yields x

x
xdF1(x) = αx +

(1 − α)x
2

= αx +

(1 − α)(x0 +


x20 − 2x0x)

2
= x0.

Thus, I obtain

α =

x0 −


x20 − 2x0x

2x − x0 −


x20 − 2x0x

.

Hence, for the parameter values in the proposition, both capacity
constraints are satisfied.

Step 3 (Existence): In the next step, I verify that two distribu-
tions are mutual best responses.

First of all, let me argue that the support of any best response
to F1 has to be a subset of [0, x]: towards a contradiction, for any
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