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h i g h l i g h t s

• Unobserved components models with stochastic volatility (SV) effects are widely used to model inflation rates.
• However, formal model comparison using Gibbs sampling is difficult.
• We show that PG-AS provides a flexible framework for estimation and model comparison.
• We provide applications using US and UK data, comparing different models.
• The model with time-varying SV in mean effects performs best.
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a b s t r a c t

In this paper, we show that particle Gibbs with ancestor sampling (PG-AS) provides a unified and flexible
framework for estimation and model comparison of unobserved components models with time-varying
volatility effects, which are widely used in inflation rate modeling.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Unobserved components (UC)modelswith time-varying volatil-
ity modeled as a stochastic volatility (SV) process are widely used
in economics, especially in the context of inflation rate modeling.
Over the years,many different varieties of theUCmodelwith SV ef-
fects have been proposed, see Stock andWatson (2007), Grassi and
Proietti (2010) and Chan (2013, 2014). Naturally, it is interesting to
investigate which specification fits the data best. However, model
comparison using marginal likelihood (ML) or deviance informa-
tion (DIC) criteria is rarely done in practical applications. This is
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because obtaining these quantities is cumbersome, often requiring
additional computational effort, see for instance Grassi and Proietti
(2010).

In this paper, we show that particle Gibbs with ancestor
sampling (PG-AS), suggested in Lindsten et al. (2014) provides a
very flexible framework for estimation and especially ML and DIC
computation of UC models with SV and SV in mean effects. We
start by estimating an UC model where the stochastic volatility
process has a direct and time-varying impact on the inflation
rate. Furthermore, the integrated likelihood is directly available
through the conditional particle filter with ancestor sampling
(CPF-AS), making ML and DIC computation straightforward. Other
varieties of the UC model, including a specification with SV effects
in both the transitory and core components of inflation are also
estimated using PG-AS. Systematic model selection using ML and
DIC provides evidence in favor of the UC model with time-varying
SV in mean (UC-SVM) effects.
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The rest of this paper is organized as follows: Section 2
introduces the models. PG-AS estimation and results using
quarterly US and UK inflation data are presented in Sections 3 and
4. The last section concludes. An Appendix at the end of the paper
provides technical details on CPF-AS.

2. Models

Our initial model is the UC-SVM model, see also Chan (2014).
This model is given as

yt = µt + αt exp (ht)+ ε
y
t , ε

y
t ∼ N (0, exp (ht)) (2.1)

ht = µh + φh (ht−1 − µh)+ εht , εht ∼ N

0, σ 2

h


(2.2)

γt = γt−1 + ε
γ
t , ε

γ
t ∼ N (0,Ω) , (2.3)

where γt = (µt , αt)
′, Ω = diag


ω2
µ, ω

2
α


, αt is the time-

varying loading coefficient that controls the effects of exp (ht) on
the inflation rate, yt , and y1:T = (y1, . . . , yT )′. Gibbs sampling
estimation of (2.1)–(2.3) is nontrivial since ht appears in both
the conditional mean and the conditional variance. Thus, well-
known methods such as Kim et al. (1998) cannot be used to draw
h1:T ∼ p (h1:T | θ, γ1:T , y1:T ). To overcome this challenge, one
can implement an accept–reject Metropolis–Hastings (AR-MH)
procedure to draw h1:T ∼ p (h1:T | θ, γ1:T , y1:T ), see Chan (2014).
Conditional on h1:T , drawing γ1:T ∼ p (γ1:T | θ, h1:T , y1:T ) and
θ ∼ p (θ | h1:T , γ1:T , y1:T ), where θ =


µh, φh, σ

2
h , ω

2
µ, ω

2
α

′ is easy
using standard Gibbs sampling techniques. However, most Gibbs
sampling approaches face two common difficulties. They are:

• (a) Obtaining the integrated likelihood at each Gibbs iteration
for model Mk, p


y1:T | θ (i),Mk


, i = 1, . . . ,N , which is

essential for ML and DIC computation is cumbersome and
besides the main Gibbs algorithm requires additional coding
effort for each separate model specification.

• (b) We cannot use a unified sampling algorithm. For instance,
assume that we want to compare (2.1)–(2.3) with yt = µt +

ε
y
t , where εyt ∼ N (0, exp (ht)) and µt = µt−1 + ε

µ
t ,

where εµt ∼ N

0, ω2

µ


. In this case, we can (I) Augment

p (θ, µ1:T , h1:T | y1:T ) to include the mixture component indi-
cators of Kim et al. (1998), z1:T . Thus, we also sample z1:T ∼

p

z1:T | θ, µ1:T , h1:T , y1;T


, which requires programming a new

routine, or (II) Change (among other things) the first and second
order derivatives of p (y1:T | θ, γ1:T , h1:T ) in the AR-MH proce-
dure of Chan (2014).

3. Estimation

Intuitively, PG-AS combines Gibbs sampling and sequential
Monte Carlo (SMC) methods.1 In PG-AS, we act as if we are op-
erating within a Gibbs sampling setting except for one difference,
namely, that we draw x1:T ∼ p (x1:T | θ, y1:T ), where xt = (ht , γt)

′

(all-at-once) using the conditional particle filter with ancestor
sampling, CPF-AS, see Appendix or Lindsten et al. (2014). Thus,
by using PG-AS, we can automatically reduce the number of sam-
pling steps. Conditional on x1:T , we sample θ ∼ p (θ | x1:T , y1:T )
element-by-element using standard Gibbs techniques. Further-
more, p


y1:T | θ (i),Mk


, i = 1, . . . ,N is automatically available

as a byproduct of CPF-AS. Therefore, we do not need to perform any
modifications or program a new routine to obtain it. On the other

1 PG-AS has shown to be very robust to path degeneracy problems, which other
techniques like for instance the particle Gibbs (PG) sampler of Andrieu et al. (2010)
can encounter, see Lindsten et al. (2014) for more details.

hand, if we were to obtain p

y1:T | θ (i),Mk


within a Gibbs sam-

pling approach, then besides sampling x(i)1:T and θ (i), we would for
example need to run a separate particle filter (for each model) at
each Gibbs iteration. Adding this step increases the computational
and coding burden.

For each model, we use p

y1:T | θ (i),Mk


, i = 1, . . . ,N ,

to compute ML and DIC. Specifically, we calculate ML using the
method of Gelfand–Dey, see Koop (2003). DIC is calculated as
D

θ̄

+ 2pD, where pD = D (θ) − D


θ̄

. This parameter describes

the complexity of the model, serving as a penalization term that
corrects deviance’s propensity towards models with more param-
eters. We estimate D (θ) using N−1ΣN

i=1 − 2 log p

y1:T | θ (i),Mk


and D


θ̄


= −2 log p

y1:T | θ̄ ,Mk


. θ̄ is the mean or mode of

{θ (i)}Ni=1. The best model is the one with the highest (smallest) ML
(DIC). Note that contrary to ML, DIC is considered as a measure of
model fit plus a degree of complexity rather than solely a goodness
of fit measure. In other words: ML addresses how well our prior
predicts the data, whereas DIC addresses how well the posterior
might predict future observations generated by the same parame-
ters that give rise to the observed data.

Finally, PG-AS requires limited design requirements from the
practitioner’s part, especially when one desires to change some
features in a particular model. For instance, in order to estimate
(2.1)–(2.3) without SVM effects, we can easily skip drawing par-
ticles for αt , omit sampling ω2

α and then change (2.1) inside CPF-

AS to yt = µt + ε
y
t . We sample x̃1:T ∼ p


x̃1:T | θ̃ , y1:T


,

where x̃t = (µt , ht)
′ all-at-once and then proceed to sam-

ple θ̃ ∼ p

θ̃ | x̃1:T , y1:T


. Furthermore, we automatically have

p

y1:T | θ̃ (i)


, which we use to compute ML and DIC.

4. Results

Our data consists of US andUKquarterly seasonally adjusted CPI
inflation rates from 1947q1 and 1955q1 to 2014q4, respectively.2
Our models are summarized in Table 1. For θ , we choose the
same priors as Chan (2013, 2014). We set the number of particles,
M , to 100 and take 20000 draws from p (θ, γ1:T , h1:T | y1:T ) after
a burn-in of 5000. The estimated MLs and DICs are reported in
Table 2. In order to calculate the numerical standard errors (NSE)
of ML and DIC, we use ‘‘computational force’’, which is simply
reproducing our calculations some 20 times and estimating NSEs
by their sample standard deviations, see also Berg et al. (2004).

Overall, we obtain very interesting results. For instance, we see
that UC-SVM (M6) performs best, regardless of criteria. However,
compared to US data, incorporating time-variation in α leads
to relatively less improvements over M5 for the UK data. The
Bayes factor of M6 over M5, BFM6,M5 , is exp (5.28) compared to
exp (16.26) for the US data. Furthermore, the difference in DIC
between M6 and M5 is 0.14 for the UK data. This indicates that
adding the additional complexity, i.e. time-variation in α does
not lead to any improvements in terms of model fit according to
DIC, underlying the difference between ML and DIC measures. For
both series, compared to M2, incorporating SV effects in the core
component, addingmoving average errors and SVM effects all lead
to improvements, both in terms ofML and DIC. The NSEs show that
ML and DIC are accurately estimated.

We collect the final output and report estimation results for
M6 in Table 3. In general, parameter estimates are similar to those

2 Both data series are downloadable from FRED’s website. We seasonally adjust
the UK series using the X-12-ARIMA procedure.
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