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h i g h l i g h t s

• We propose a Copula approach for estimating endogenous stochastic frontier models.
• We discuss the model identification strategy.
• Maximum likelihood estimation procedure is proposed.
• Monte Carlo results show that the proposed estimator performs well in finite sample.
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a b s t r a c t

This papers considers an alternative estimation procedures for estimating stochastic frontier models with
endogenous regressors when no external instruments are available. The approachwe propose is based on
copula function to directly model the correlation between the endogenous regressors and the composed
errors. Estimation of model parameters is done using maximum likelihood. Monte Carlo simulations are
used to assess and compare the finite sample performances of the proposed estimation procedures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A standard approach to handle endogeneity problem in the
stochastic frontier models is to use likelihood based instrumental
variable estimation methods, see for example, Kutlu (2010), Tran
and Tsionas (2013) and Amsler et al. (forthcoming). This type of
approach relies upon the availability of a set of outside information
that may be used to construct instruments either in the reduced
form equations or the instruments themselves. The specification
of the reduced equations has the advantage that it provides
more efficient estimates of the frontier parameters as well as
improvement in predicting inefficiency term. However, unlike the
standard linear models, the main disadvantage in the stochastic
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frontier setting is that a substantive assumption needs to be made
regarding the correct specification of the reduced form in order to
correctly predict the technical inefficiency component. In addition,
the instruments, if they are available, often subject to potential
pitfalls because they fail to meet the two required conditions
adequately that the instruments are sufficiently correlated with
the endogenous regressors, and they are uncorrelated with
the composed errors term. Thus, the potential difficulty of
implementing these approaches is when there is no outside
information available to construct the appropriate instruments.

To alleviate these potential problems, this paper considers
an alternative approach to handle the endogeneity problem in
stochastic frontier models, which does not require the availabil-
ity of outside information to construct the instruments. The method
we propose is based on Copula function to directly model the de-
pendency of the endogenous regressors and the composed error.
Specifically, copulas allow us to model the marginal distributions
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of the endogenous regressors and composed error separately from
their dependency. Consequently, we can construct a flexible joint
distribution of the endogenous regressor and the composed error
that can accommodate any degree of dependency between them.
We then use this joint distribution to derive the likelihood function
andmaximize it to obtain the consistent estimates of themodel pa-
rameters.

This paper is organized as follows. Section 2 presents themodel
and discusses the Copula approach to deal with endogeneity issues
in stochastic frontier framework when outside information may
not be available for use as instruments. In Section 3 we examine
the finite sample performance of the proposed two approaches via
Monte Carlo simulations. Section 4 concludes the paper.

2. The model and methodology

Consider the following stochastic frontier model:

yi = z ′

iα + x′

iβ + vi − ui, i = 1, . . . , n, (1)

where yi is the output of firm i, zi is a d × 1 vector of exogenous
input, xi is a p × 1 vector endogenous input, α and β are d × 1
and p × 1 vectors of unknown parameters, vi is a symmetric
random error,ui is the one-sided random disturbance representing
technical inefficiency. We assume that zi is uncorrelated with vi
and ui but xi are allowed to be correlated with vi and possibly with
ui, and this generates the endogeneity problem. We also assume
that ui and vi are independent and leave the formof ui unrestricted.
The discussion that follows can be easily extended for the case
where the (exogenous) environmental variables are included in the
distribution of ui (e.g., Battese and Coelli, 1995).

Following standard practice, assume that vi ∼ i.i.d.N(0, σ 2
v )

and ui ∼ i.i.d.
N(0, σ 2

u )
. Then the density of εi = vi − ui =

yi − z ′

iα − x′

iβ is given by

g(εi) =


∞

0
fv(εi + ui)fu(ui) dui =

2
σ

φ
εi

σ


Φ


−

λεi

σ


, (2)

where σ 2
= σ 2

v +σ 2
u , λ = σu/σv, φ(·) andΦ(·) are the probability

density function and cumulative distribution function of a standard
normal random variable, respectively.

Before discussing the Copula approach, we briefly describe the
model identification. Under our setting, the model is identified as
long as σ 2

u is not zero or very close to zero, even if the endogenous
regressors happen to be normal. However, when σ 2

u = 0 (implying
εi is normal) and the endogenous regressors are normal, themodel
identification breaks down because it is difficult to distinguish the
variations as results of endogenous regressors from the variation
due to the composed-error.1 Consequently, this identification
problem has important implications for testing the null hypothesis
of fully efficient firms (i.e., H0 : σ 2

u = 0). For more details
discussion on the identification issue, see Online Appendices 1 and
2 of Park and Gupta (2012) (at http://pubsonline.informs.org/doi/
suppl/10.1287/mksc.1120.0718).

Let F(x1, . . . , xp, ε) and f (x1, . . . , xp, ε) be the joint distribution
and the joint density of (x1, . . . , xp) and εi, respectively. In practice,
F(x1, . . . , xp, ε) and f (x1, . . . , xp, ε) are typically unknown and
hence need to be estimated. Following Park and Gupta (2012),
we suggest a copula approach to construct and estimate this
joint density. The copula essentially captures the dependence
in the joint distribution of the endogenous regressors and the
composed errors. For exposition purpose, suppose we have a joint
distribution of (x1, . . . , xp, ε) with joint density f (x1, . . . , xp, ε),

1 We would like to thank an anonymous referee for pointing this out.

and let fj(xj), Fj(xj), for j = 1, . . . , p, g(ε) and G(ε) denote the
marginal density and CDF of xj and ε, respectively. Also let C denote
the ‘‘copula function’’ defined for (ξ1, . . . , ξp+1) ∈ [0, 1]p+1 by
C(ξ1, . . . , ξp+1) = P(F1(x1) ≤ ξ1, . . . , Fp(xp)

≤ ξp,G(ε) ≤ ξp+1),

so that the copula function is itself a CDF. Moreover, since Fj(xj)
and G(·) are marginal distribution function, each component Uj =

Fj(xj) and Uε = G(ε) has a uniform marginal distribution (see
for example Li and Racine, 2007, Theorem A.2). Let c(ξ1, . . . , ξp)
denote the pdf associated with C(ξ1, . . . , ξp), then by Sklar’s
theorem (Sklar, 1959), we have
f (x1, . . . , xp, ε)

= c(F1(x1), . . . , Fp(xp),G(ε))g(ε)
p

j=1

fj(xj). (3)

Thus, Eq. (3) shows that the copula function completely character-
izes the dependence structure of (x1, . . . , xp, ε), and c(ξ1, . . . , ξp)
= 1 if and only if (x1, . . . , xp, ε) are independent of each other. For
more rigorous treatment on Copula, see Nelsen (2006).

To obtain the joint density in (3), we need to specify the copula
function. One commonly used copula function is the Gaussian
copula. Other copula functions such as Frank, Placket, Clayton,
and Farlie–Gumbel–Morgenstern can also be used. The Gaussian
copula is generally robust for most applications and has many
desirable properties (Danaher and Smith, 2011). LetΦΣ,p+1 denote
a (p + 1)-dimensional CDF with zero mean and correlation matrix
Σ . Then the (p+ 1)-dimensional CDF with correlation matrix Σ is
given by
C(w; Σ) = ΦΣ,p+1(Φ

−1(U1), . . . , Φ−1(Up), Φ−1(Uε)),

where w = (U1, . . . ,Up,Uε) = (F1(x1), . . . , Fp(xp),G(ε)). The
copula density is
c(w; Σ) = (det(Σ))−1/2

× exp

−

1
2
(Φ−1(U1), . . . , Φ−1(Up), Φ−1(Uε))

′

(Σ−1
− Ip+1)(Φ

−1(U1), . . . , Φ−1(Up), Φ−1(Uε))


. (4)

The log-likelihood function corresponding to (4) is then

ln L(θ, Σ) =

n
i=1


ln c(F1(x1i), . . . , Fp(xpi),G(εi; θ); Σ)

+

p
j=1

ln fj(xji) + ln g(εi; θ)


, (5)

where θ = (α′, β ′, λ, σ 2)′ and the form of c(·) is given in (4).
Notice that the first term in the summation in (5) is derived from
the copula density, and this term reflects the dependence between
the endogenous variables and the composed errors. In addition,
since themarginal density fj(xj)does not contain any parameters of
interest, the second term in the summation in (5) can be dropped
from the log-likelihood function. Finally, it is clear from (5) that
if there are no endogeneity problem, (5) collapses to the log-
likelihood function of the standard stochastic frontier models.

By maximizing the log-likelihood function in (5), consistent
estimates of (θ, Σ) can be obtained, and this can be done in a two-
step estimation procedure describe below.
Step 1: Estimation of Fj(xj), j = 1, . . . , p; and G(ε; θ)

Since we have observed sample of xji, j = 1, . . . , p; i =

1, . . . , n; in the first step, we can estimate Fj(xji) by

F̃nj =
1

n + 1

n
i=1

1(xji ≤ x0j), j = 1, . . . , p, (6)
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