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h i g h l i g h t s

• Behavior in the centipede game when players are not expected utility maximizers.
• Players choose under uncertainty in a probabilistic manner.
• A core deterministic decision theory is embedded in a model of probabilistic choice.
• We consider, inter alia, a constant error/trembles and quantal response equilibrium.
• Players adopt non-linear decision weights/overweight the likelihood of rare events.
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a b s t r a c t

The centipede game is a two-player finite game of perfect information where a unique subgame perfect
Nash equilibrium appears to be intuitively unappealing and descriptively inadequate. This paper analyzes
behavior in the centipede game when a traditional game-theoretical assumption that players maximize
expected utility is relaxed. We demonstrate the existence of a descriptively adequate subgame perfect
equilibriumunder two standard decision-theoretical assumptions. First, players choose under uncertainty
in a probabilistic manner as captured by embedding a core deterministic decision theory in a model of
probabilistic choice. Second, players adopt non-linear decision weights and overweight the likelihood of
rare events as captured, for example, by rank-dependent utility or prospect theory.

© 2015 Elsevier B.V. All rights reserved.

1. The centipede game

The centipede game is a famous finite game of perfect infor-
mation. In this game two players move sequentially one after an-
other. At the beginning of the game, player 1 can either terminate
the game immediately (in which case both players receive a small
payoff of 1) or pass the move to player 2. Player 2 can then either
terminate the game (in which case player 1 receives nothing and
player 2 receives a payoff of 2) or pass the move back to player 1.
Player 1 can then either terminate the game (in which case both
players receive a payoff of 2) or pass the move back to player 2.
The game continues in this fashion for many rounds with payoffs
gradually increasing. If the last round is reached, player 2 must de-
cide between option R where both players receive a payoff of 100
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and option D where player 1 receives a payoff of 98 and player 2
receives a payoff of 101.

The centipede game is presented in the extensive form in Fig. 1.
The idea of this game can be traced back to Rosenthal (1981, Fig. 3,
p. 96). In all Nash equilibria of the centipede game player 1 chooses
D in the first decision node. In a unique subgame perfect Nash
equilibrium both players choose D in all decision nodes, which
can be established by backward induction. This outcome appears
counterintuitive—both players can get much higher utility in the
later nodes if they do not terminate the game in the first node.
Experimental evidence (e.g., McKelvey and Palfrey, 1992) suggests
that most people do not stop at the first node but terminate the
game at some intermediate node (the game is rarely played till the
last node).

2. Introducing models of probabilistic choice

Traditional game theory assumes that players maximize
expected utility (e.g., von Neumann and Morgenstern, 1944). In
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Fig. 1. The centipede game.

expected utility theory a decisionmaker chooses in a deterministic
manner (except for a special case of indifference). Numerous
laboratory experiments, however, establish that revealed choices
under uncertainty are often probabilistic, e.g. Hey and Orme
(1994) and Ballinger andWilcox (1997). Thus, amore descriptively
adequate modeling approach is to embed a deterministic decision
theory (expected utility or a generalized non-expected utility
theory) in a model of probabilistic choice (cf. Loomes and Sugden,
1998 and Blavatskyy and Pogrebna, 2010).

In traditional game theory players always pick the strategy that
yields the highest expected utility. In this section we only assume
that players are more likely to pick the strategy that yields the
highest expected utility (but they do not necessarily always choose
this strategy). With a model of probabilistic choice as a primitive
we have a natural foundation for a mixed strategy equilibrium.
In this equilibrium, players randomize not to keep the opponent
indifferent but because it is in their nature to select better choice
options with a higher probability but not all the time.

Several models of probabilistic choice were proposed in the lit-
erature but not all of them are promising candidates for analyzing
the centipede game. Randomutility or randompreferences e.g. Fal-
magne (1985),1 the models of Fishburn (1978) and Blavatskyy
(2007, 2011) assume that choice under certainty is deterministic.
The implications of these models are the same as in the subgame
perfect Nash equilibrium described in Section 1. In the last node
player 2 decides between option D that yields utility of 101 with
certainty and option R that yields utility of 100 with certainty. If
choice under certainty is deterministic, player 2 always chooses D
in the last node. Knowing this, player 1 always chooses option D in
the before–last node and so forth until we arrive at the conclusion
that player 1 choses option D in the first node of the game.

One of the simplest models not assuming deterministic choice
under certainty is a constant error or tremble model (e.g., Harless
and Camerer, 1994). In this model, a decision maker chooses the
optionwith a higher expected utilitywith probability 1−τ and the
optionwith a lower expected utility—with probability τ ∈ (0, 0.5).
Thus, in the last node of the centipede game, player 2 chooses
option D with probability 1 − τ and option R—with probability τ .
Knowing this, in the before–last node of the game, player 1 chooses
option D with probability 1 − τ and option R—with probability τ .
Going by backward induction we establish that in all nodes both
players chose option D with probability 1 − τ and option R—with
probability τ . Thus, a constant error/tremble model predicts that
the centipede game most likely ends in the first node but the play
might also terminate in one of the intermediate nodes or even in
the last node (though the chances are small).

A more sophisticated model of probabilistic choice is Fechner
(1860) model of random errors.2 In this model, a decision maker
chooses option D over option R with probability

P (D, R) = Φ0,σ (U (D) − U (R)) (1)

1 See also Loomes and Sugden (1995) for an application to decision theory and
Gul and Pesendorfer (2006) for a behavioral characterization.
2 See Hey and Orme (1994) for an application to decision theory and Blavatskyy

(2008) for a behavioral characterization.

where Φ0,σ : R → [0, 1] is the cumulative distribution function
of the normal distribution with zero mean and constant variance
σ > 0 and U : {R,D} → R is the expected utility of the cor-
responding choice option. Thus, in the last node of the centipede
game, player 2 chooses option D with probability Φ0,σ (1) > 0.5
and option R with probability Φ0,σ (−1) < 0.5. Knowing this, in
the before–last node, player 1 chooses option D with probabil-
ity Φ0,σ


2 · Φ0,σ (1) − 1


> 0.5 and option R with probability

Φ0,σ

1 − 2 · Φ0,σ (1)


< 0.5.3 Proceeding by backward induction

we establish that the probability of choosing R increases for both
players (moving from the last to the first node) but never exceeds
0.5. Dashed lines in Figs. 2 and 3 plot the probability of choosing R
in a subgame perfect equilibrium derived from the Fechner model
with σ = 1 for players 1 and 2 respectively.

Luce (1959) choice model assumes that people first detect and
delete dominated alternatives. Second, they chose in a probabilistic
manner among the remaining non-dominated alternatives. The
prediction of this model coincides with the subgame perfect Nash
equilibrium described in Section 1.
Yet, in most microeconomic applications, the first stage of Luce’s
choice model is typically ignored and the mathematical formula of
the second stage is applied to all choice alternatives. In application
to game theory Luce’s choice model is known as logit quantal
response equilibrium (McKelvey and Palfrey, 1995). A decision
maker chooses option D over option R with probability

P (D, R) =
eλU(D)

eλU(D) + eλU(R)
(2)

where λ > 0 is a noise parameter. Models (1) and (2) generate
nearly identical choice patterns. In a logit quantal response
equilibrium the probability of choosing R increases (but never
exceeds 0.5) for both players as we move from the last to the first
node. Gray lines in Figs. 2 and 3 plot the probability of choosing R
in a logit quantal response equilibrium with λ = 1.6 for players 1
and 2 respectively.

Wilcox (2008, 2011) recently proposed ‘‘contextual utility’’
model of probabilistic choice. When one choice option first-order
stochastically dominates the other option, Wilcox (2011, p. 94) as-
sumes that a decisionmaker chooses as if making a constant error/
tremble: the dominant option is chosen with probability 1 − ω/2
and the dominated option is chosenwith probabilityω/2, for small
probability ω ∈ (0, 0.5). In the centipede game, this happens only
when player 2 decides in the last decision node. In all other nodes
of the centipede game neither option stochastically dominates the
other option. In this case, Wilcox (2011, p. 96) assumes that a de-
cision maker chooses option D over R with probability

P (D, R) = (1 − ω) Φ0,σ


U (D) − U (R)

u − u


+

ω

2
(3)

where u denotes the highest utility payoff that a player can receive
in choice options D and R and u denotes the lowest utility payoff
that a player can receive in choice options D and R.

3 We make a simplifying assumption that both players have the same variance
σ > 0 of random errors.
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