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HIGHLIGHTS

e Develop a difference-in-differences estimator for spatial data.

o Allow for local spatial interaction in potential outcomes.

o Identify direct and indirect treatment effects.

e Monte Carlo simulations show good finite sample performance.
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(common trend and ignorability) a straightforward spatially explicit version of the benchmark difference-
in-differences regression is capable of identifying both direct and indirect treatment effects. We

demonstrate the finite sample performance of our spatial estimator via Monte Carlo simulations.
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1. Introduction

The linear difference-in-differences (DID) model is a benchmark
tool in the program evaluation literature (e.g., Ashenfelter, 1978;
Ashenfelter and Card, 1985). Atits core, a treatment effect is the dif-
ference between two potential outcomes, with potential outcomes
being a function of treatment status (Rubin, 1974). The fundamen-
tal problem is that units are never observed in both treated and
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untreated states (Holland, 1986), and identification requires com-
parison of treated units to untreated (control) units. In the stan-
dard DID design, observations i = (1,2, ..., n) are observed in
two time periods, T € {0, 1}, and are grouped via D € {0, 1} such
that D; = 1 indicates treatment. Given a vector of time-varying
covariates, Xj;, the standard DID equation is:

Yie = oo + o1 Xit + 2Dy + a3Tir + asDicTir + &y, (M

in which ¢;; is a mean-zero error term that is uncorrelated with D;;
and Tj. It is straightforward to accommodate additional time pe-
riods. The identifying assumptions require correct linear specifica-
tion of the conditional mean, a homogeneous effect of treatment,
and the parallel-trends assumption denoting that absent treatment
both treated and untreated units evolve along the same temporal
path. Strong or weak ignorability (unconfoundedness) is assumed
as well, implying that treatment assignment is independent of the


http://dx.doi.org/10.1016/j.econlet.2015.10.035
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2015.10.035&domain=pdf
mailto:delgado2@purdue.edu
mailto:rflorax@purdue.edu
http://dx.doi.org/10.1016/j.econlet.2015.10.035

124 M.S. Delgado, RJ.G.M. Florax / Economics Letters 137 (2015) 123-126

outcome y;;, eventually conditional on X;;. Maintaining these as-
sumptions and suppressing the subscript, the conditional average
treatment effect, ATE (x) is:

ATE(x) = {(E[y)X =x,D=1,T = 1]
—EylX =x,D=1,T = 0]}
—{Ely)X =x,D=10,T = 1]
—E[yJX =x,D=0,T = 0]}, 2)

or the difference in the conditional differences over time between
the treated and control units. From Eqgs. (1) and (2), we can see
that ATE = oy4. Typically, Eq. (1) is estimated with ordinary least
squares (OLS), and arejection of Hp : 4 = Ovia a t-testis evidence
of a significant causal effect.

Another key assumption needed for identification is the sta-
ble unit treatment value assumption (SUTVA) (Rubin, 1978, 1990)
which “implies that potential outcomes for person i are unrelated
to the treatment status of other individuals” (Angrist et al., 1996, p.
446). Violation of the SUTVA assumption, referred to as “interfer-
ence” or “social interaction”, invalidates identification of causal
effects in the traditional DID setup, and adjustments are clearly
needed. It no longer suffices to only consider one’s own treatment
status, but the treatment status of other units has to be taken into
account as well. For example, imagine a program designed to im-
prove crop yields by enhancing farming ability through education
or experience. Communication among neighboring farmers may
evoke indirect treatment effects, in which treated and untreated
farmers benefit from treatment (knowledge) of others. Similar ex-
amples are prevalent throughout economics.

We develop a spatial DID model that accounts for the possibil-
ity of spatial correlation in treatments and spatial interaction in
treatment responses.' The term “spatial interaction” is deliberate
and refers to the fact that both direct and indirect treatment ef-
fects exist, because potential outcomes are not independent. Indi-
rect treatment effects are sometimes referred to as “spillovers” or
“network effects”, resulting from contagion, displacement, com-
munication, social comparison, or signaling (Gerber and Green,
2012). Such spillovers create spatial correlation in the treatment
response. It is important to note that we are explicitly interested in
spatial correlation caused by dependence in potential outcomes, as
opposed to spatial correlation stemming from spatially correlated
treatments or any other sort of spatial sorting process. Spatial in-
teraction in treatment responses requires a plausible causal mech-
anism to be at work; existing spatial patterns due to spatial sorting
need to be excluded as a source of spatially correlated treatment
responses. This is akin to the well known ignorability assumption
evoked in the traditional DID setup (see Imbens and Wooldridge,
2009).

We assume treatment is binary, and restrict our focus to spatial
interaction in the treatment results that are “local”, as opposed to
“global”. This means that the spatial effects are restricted to im-
mediate neighbors, defined on the basis of contiguity or distance.?
In effect, this amounts to assuming that SUTVA holds outside the
bounds of immediate neighbors. In the context of the farming ex-
ample one might assume that SUTVA holds between villages, but
local spatial interaction and hence SUTVA violation is allowed for

11 spatial econometrics, “autocorrelation” and “dependence” are often treated
as synonymous, even though dependence is a characteristic of the joint probability
density function and can only be measured as correlation under assumptions such
as normality, stationarity, etc. Spatial patterns on a map can be generated through
a dependence mechanism that may or may not be known, or result from spatial
heterogeneity (Anselin, 1988).

2 In the global case, indirect effects propel through the entire spatial system;
everybody is a neighbor of everybody else, with interactions (or correlations)
subject to distance decay.

within villages. Generally, however, the only requirement for our
approach to be valid is that SUTVA holds across some particular
dimension of the sample space; it is not necessarily restricted to
a discernable within-between situation. Under these general cir-
cumstances, a simple extension of the standard DID setup using
spatial econometric tools allows us to estimate the ATE, which
we decompose into a direct (“own”) and indirect (“neighbor”)
treatment effect. Our spatial DID model is straightforward to im-
plement, and simple Monte Carlo exercises illustrate good finite
sample performance.

2. Spatial difference-in-differences

Imagine a setup with n cross-sectional, spatial observations
observed over two time periods that can represent points or
areas. We operationalize local spatial interaction in treatment
responses using the spatial lag operator L*, defined as W, where
W; is a (2n x 2n) block-diagonal row-standardized spatial weights
matrix containing non-zero elements for spatial units belonging to
contiguity class s (Anselin, 1988). The contiguity class can vary, as
long as the number of neighbors is restricted and does not extend
to the entire spatial system. Spatial interaction in outcomes is
defined as D,T = (I + pL*)Do T = (I + pWs)D o T, where I is the
identity matrix, p a spatial autoregressive parameter, and o signals
element-by-element multiplication (Hadamard product).

One question is whether we need to distinguish random treat-
ment from spatially correlated treatment.® In the case of spatial
correlation in treatment the SUTVA assumption is not violated.
Moreover, even with spatially correlated exogenous covariates the
unbiasedness, consistency, and efficiency properties of OLS are un-
altered (Anselin, 1988). Hence the standard DID approach leads to
proper identification and estimation of the ATE, and we do not re-
quire spatially explicit reparameterization of Eq. (1).

The situations with spatial interaction in the responses are
different because SUTVA is violated and indirect effects should
therefore be explicitly modeled. One common approach is to
meticulously identify all treatment and control groups and apply
a difference-in-difference-in-differences technique (Imbens and
Wooldridge, 2009). There are several disadvantages to such an
approach. First, the number of groups becomes unwieldy and the
estimator becomes inefficient in small samples.* Second, since
there are no restrictions on the estimated parameters one may be
confronted with illogical “bouncing beta’s”, such as the case where
the treatment response of having two treated neighbors may be
greater than that of having four treated neighbors. We therefore
suggest a spatially structured approach.

Without loss of generality the model with spatial interaction in
the responses is:

y :Ol()+0t]X+Ol2D+O[3T+C(4DLOT+S,
= ag + a1 X +aD+ asT +as(I + pW)Do T + ¢,
=CU()+O[1X+O{2D+O{3T+C(4DOT+015WDOT+8, (3)

in which as = pay, and D represents either random or spatially
correlated treatments. We assume p # 0 so that the model does
not revert to the standard DID equation. Omitting WD o T renders

3 Given that D is binary, join count statistics can be used to determine whether
there is spatial autocorrelation in treatment (Cliff and Ord, 1981).

45 spatial setting with local indirect effects implies that groups would have to be
defined such that units with different numbers of treated neighbors would fall into
different treatment or control groups. In the simple case of a (10 x 10) spatial grid
with adjacency defined as the sharing of a border or vertex, the number of groups
based on spatially interactive responses is 9 x 2, the number of treated neighbors
(0, 1, ..., 8) multiplied by 2 to incorporate whether own treatment is O or 1.
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