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h i g h l i g h t s

• We investigate the joint significance test for nonstationary ordered choice model.
• The convergence rate of maximum likelihood estimator of explanatory variable is T .
• Wald statistic is asymptotically Chi-squared for nonstationary logit or probit model.
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a b s t r a c t

This paper studies the test of joint significance for the ordered choice model with multiple explanatory
variables following integrated processes. The results show that for the widely used logit and probit
models, when the true parameter vector of explanatory variables is zero, the classical Wald statistic is
still useful and has a Chi-squared limiting distribution.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonstationary ordered choice models have attracted lots of at-
tention in the process of the financial andmacroeconomic time se-
ries modeling. Hu and Phillips (2004), Phillips et al. (2007) have
developed an asymptotic theory for time series ordered choice
models with explanatory variables generated as integrated pro-
cesses. Their theory fundamentally depends on the assumption
that ∥β0∥ ≠ 0, where β0 is the true parameter vector of explana-
tory variables and ∥ · ∥ is the Euclidean norm. In practice, however,
we may not have prior information about this assumption. There-
fore, it should test ∥β0∥ = 0 before applying their results.

In this paper, we investigate the joint significance test for
the ordered choice model with multiple integrated explanatory
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variables. The paper is structured as follows. Section 2 outlines the
model and assumptions. Section 3 gives the main results of the
limiting distribution of the Wald statistic and also presents some
Monte Carlo simulation results. Some useful proofs of the main
theorems are given in the Appendix of Xu (2015).

2. Model and assumptions

The nonstationary ordered choice model is defined as

y∗

t = x′

tβ0 − εt for t = 1, . . . , T (1)

where xt is a k-dimensional vector of explanatory variables and εt
is an error termwhich is independently and identically distributed
(i.i.d.) with cumulative distribution function F . The dependent
variable y∗

t is assumed to be unobserved and can be indicated
by yt
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(2)

Note that the threshold parameters in (2) are not scaled, which
is different from Hu and Phillips (2004), because the thresholds
have the same order of probability as εt in (1) when ∥β0∥ = 0.
To derive the limiting distribution results, we make the following
assumptions regarding the data generating processes xt .

Assumption 1. Let xt follow a k-dimensional integrated processes,

xt = xt−1 + υt

where x0 = 0 and υt ∼ i.i.d.(0, Ωυ). By Functional Central Limit
Theorem we have

T−1/2x[Tr] ⇒ Bυ(r)

where [·] denotes the floor function, ⇒ signifies weak conver-
gence, and Bυ(r) is the Brownian motion with positive definite co-
variance matrix Ων .

In the ordered discrete choice model, the conditional probabil-
ity distribution of yt is given by

P0(xt; θ0) = 1 − F(x′

tβ0 − µ1
0)

Pj(xt; θ0) = F(x′

tβ0 − µ
j
0) − F(x′

tβ0 − µ
j+1
0 )

for j = 1, . . . , J − 1

PJ(xt; θ0) = F(x′

tβ0 − µ
J
0)

where Pj(xt; θ0) = P(yt = j|FFF t−1), θ0 = (β ′

0, µ
′

0)
′,FFF t−1 is some

filtration. Then we have conditional expectation of yt

m(xt; θ0) =

J
t=1

j · Pj(xt; θ0).

Define ut = yt − mt , it is apparent that (ut ,FFF t) is a martingale
difference with conditional moments

σk(xt; θ0) = E(uk
t |FFF t−1).

Define zkt = uk
t − σkt , ηklt = E(zktzlt |FFF t−1) and aklt =

zktzlt − ηklt . Then we can see that (zkt ,FFF t) and (aklt ,FFF t) are also
martingale difference sequence. Furthermore, we define the fourth
conditional expectation of zkt as τklmnt = E(akltamnt |FFF t−1). These
moment conditions are very useful in proving Theorems 1 and 2.

Let the indicator function be

Λ(t, j) =
Πi=0,...,J&i≠j(yt − i)
Πi=0,...,J&i≠j(j − i)

.

Then the log likelihood function has the form

log LT (θ) =

T
t=1

J
j=0

Λ(t, j) log Pj(xt; θ).

Let the first and second derivatives of F be denoted as f and ḟ .
The elements of the score function ST (θ) = (ST (β)′, ST (µ)′)′ =

(∂ log LT/∂β ′, ∂ log LT/∂µ′)′ are

∂ log LT
∂β

=

T
t=1

J
j=0

Λ(t, j)
Pj(xt; θ)

pj(xt; θ)xt (3)

∂ log LT
∂µj

=

T
t=1


Λ(t, j − 1)
Pj−1(xt; θ)

−
Λ(t, j)
Pj(xt; θ)


f (x′

tβ − µj) (4)

where

p0(xt; θ) = −f (x′

tβ − µ1)

pj(xt; θ) = f (x′

tβ − µj) − f (x′

tβ − µj+1) for j = 1, . . . , J − 1

pJ(xt; θ) = f (x′

tβ − µJ).

Since the expected value of the ratio Λ(t, j)/Pj(xt; θ) is 1, the
ratio can be written as a sum of martingale differences

Λ(t, j) =

J
k=1

gk(xt; j, θ0)zkt + 1 (5)

where gk(j) is the coefficient of zkt for a given j. Using (5), we
rewrite (3) and (4) as

∂ log LT
∂β

=

T
t=1

J
k=1

Ak(xt; θ)zk(xt; θ)xt

∂ log LT
∂µj

=

T
t=1

J
k=1

Bk(xt; j, θ)zk(xt; θ)

where

Ak(xt; θ) =

J
j=0

gk(xt; j, θ)pj(xt; θ)

=

J
j=1

f (x′

tβ − µj+1)[gk(xt; j, θ) − gk(xt; j − 1, θ)] (6)

Bk(xt; j, θ) = (gk(xt; j − 1, θ) − gk(xt; j, θ))f (x′

tβ − µj+1).

Since the parameters are commonly expressed in two types, we
write the Hessian matrix HT (θ) as

HT (θ) =


HT ,11(θ) HT ,12(θ)
HT ,21(θ) HT ,22(θ)


. (7)

The detailed forms of HT (θ) are shown in Appendix A of Xu
(2015). Since the ML estimator involves nonlinear functions of the
process xt , it helps to make some assumptions about the distribu-
tion function F of εt .

Assumption 2. F is three times differentiable. Further, for k, l =

1, . . . , J

(a) AkAlηkl, AkBlηkl, BkBlηkl are bounded.
(b) (AkḂlzkzl), (AkȦlzkzl), (BkḂlzkzl), (Ċkzk) are bounded.
(c) τklpqAkAlApAq, τklpqAkAlBpBq, τklpqBkBlBpBq are bounded.

Following similar techniques as in Park and Phillips (2000), it
can be shown that both probit and logit models satisfy Assump-
tion 2.
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