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h i g h l i g h t s

• We consider a model of Econometric Learning with Bounded Memory.
• Price setting depends on expected price and predicted state variable.
• We prove that the RCAR process of price movement is covariance-stationary.
• We formulate a sufficient condition for stationarity of RCAR model.
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a b s t r a c t

In this paper, we consider a model where producers set their prices based on their prediction of the
aggregated price level and an exogenous variable, which can be a demand or a cost-push shock. To form
their expectations, they use OLS-type econometric learning with bounded memory. We show that the
aggregated price follows the random coefficient autoregressive process and we prove that this process is
covariance stationary.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Econometric Learningwas designed tomodel the forecast of the
future economic variables in forward lookingmodels. In contrast to
the Rational Expectations Theory, which imposes a very strong as-
sumption that the agents know the structure of the model, Econo-
metric Learning only assumes that agents behave as professional
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econometricians. They collect the available data and use OLS re-
gression to produce the forecast. As more data becomes available,
this econometric forecast often converges to the rational expecta-
tions equilibria (Sargent, 1993). Although econometric learning re-
laxes many assumptions of the rational expectations mechanism,
we think that one of them could still be too strong. In particular, it
assumes that agents have access to the entire history of the vari-
ables, and they use all of them to form the forecast. Not only does
that assumption require infinite memory, it also neglects the cost
of data collection and processing.

Several papers facilitate the assumption of infinitememory and
consider the case when the memory is bounded (for a survey,
see Chevillon and Mavroeidis, 2014). However, the majority of
the results are proven for non-stochastic models (Evans and
Honkapohja, 2000). The only exception known to us is Honkapohja
and Mitra (2003) who investigate learning with bounded memory
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in a stochastic environment. However, they consider a very special
case of learning the intercept parameter, and their model does not
account for the possibility of using some exogenous independent
variables when the expectation is formed.

This paper picks up the research from Honkapohja and Mitra
(2003) and explores the dynamic properties of econometric
learning with bounded memory in a stochastic environment. We
expand that paper by adding a stochastic exogenous variablewhich
can be used for econometric forecasts.

The introduction of stochastic independent variable makes
the mathematical framework more complex as compared to
Honkapohja and Mitra (2003) where the model evolves according
to a simple autoregressive process (AR). In this paper, the model is
more complex since the transition matrix has random coefficients
(the random coefficient autoregressive model, RCAR, as in Nicholls
and Quinn, 1982). It is also more complex than Conlisk (1974),
since our transition matrices are autocorrelated. Nevertheless, we
proved the stationarity of the model. In addition, we formulate a
sufficient condition for stationarity which can be more generally
applied in the RCAR literature.

This paper is structured as follows. In Section 2 we present
the model and introduce OLS-type learning with finite memory.
In Section 3 we prove that the RCAR process of price movement is
covariance-stationary. Section 4 concludes the paper.

2. The model

We consider a model where producer j sets the current price
pt(j) depending on the expected aggregated level of price pet and
the exogenous but not completely observable state variable wt :

pt(j) = α + βpet + δwt (1)

whereα, δ are known constant parameters andwt is the estimated
value of the exogenous cost push shockwhich can negatively affect
the profit. The cost push shock wt is not observed in period t;
however, every producer has access to the historical data of its past
realisation of {ws}.

This model is very similar to the cobweb model as presented
in Kaldor (1934), Ezekiel (1938) and more recently in Evans and
Honkapohja (2001). It is known to be stable when |β| < 1. We
will restrict our analysis to this particular case. In equilibrium, each
producer sets the same price, that is pt = pt(j).

2.1. OLS learning

As wt is the only state variable, the producer expects the
aggregated price to depend on the variable

pt = α2 + β2wt , (2)

whereα2 andβ2 are unknownparameterswith producer estimates
based on available historical data {ps, ws}. The price expectation is
then

pet =α2,t−1 +β2,t−1wt (3)

where α2,t and β2,t are estimated coefficients and wt is a proxy
for wt . The classical OLS-type learning model assumes that agents
forecast future prices by running the OLS regression using Eq.
(2) and that at time t , the available information set consists
of the entire history of prices and the exogenous state variable
{ps, ws}

t−1
s=0 . Coefficients α2,t and β2,t are OLS estimators on the

information set {ps, ws}
t
s=0.

2.2. Learning with bounded memory

Learning with bounded memory in our paper simply means
that the agent is only using a limited number of observations T

to form expectations.1 The forecast will be made using the same
OLS algorithm as in the classical case (3); however, we assume
that only a finite set of historical data, {ps, ws}

t−1
s=t−T , is used to

estimate the coefficients. Consequently, the estimators α2,t andβ2,t are defined as follows:

β2,t−1 =

T
i=1


(wt−i − wt−1)(pt−i − pt−1)


T

i=1


(wt−i − wt−1)2

 , (4)

α2,t−1 = pt−1 −β2,t−1wt−1, (5)

wt−1 =
1
T

T
i=1

wt−i, (6)

pt−1 =
1
T

T
i=1

pt−i. (7)

Finally, as the agents cannot observe the realisation ofwt at the
timewhen they set their prices, the forecastwt is used. The forecast
is based on available historical data {ws}

t−1
s=t−T , and consists of the

weighted sumas inMitra andHonkapohja (2003). Formally,wt can
be written as

wt =

t−1
i=1

γi,twt−i, (8)

whereγi,t is the expected probability thatwt = wt−i and therefore,

t−1
i=1

γi,t = 1. (9)

Our set up covers an extensive range of models. For example,
if wt follows a Markov process with high persistency, the best
prediction for wt is wt−1. In this case, γ1t = 1, and γit = 0 for
i > 1. In particular, for T = 2, γ1 = 1, γ2 = 0, the price pt
follows a simple autoregressive process with pet = pt−1. If wt is
i.i.d. distributed, the best proxy for wt might be wt−1. In this case,
γi,t =

1
T , and the price pt follows the AR(T ) process with pet =

pt−1. Our model will also work if γi,t corresponds to precautionary
predictors with larger weights attached to the worse realisations
as in the Robust Control or The Ambiguity Aversion theories.

The complete model consists of (1), (3), (8), (4), (5), (6) and (7).
Our aim is to show that pt is stationary for all T > 1.

First, we show that the aggregated price pt follows a Random
Coefficient Autoregressive (RCAR) process.

Proposition 1. The actual price follows an autoregressive process of
order T with random coefficients as in (10)

pt = α + β


T

i=1

Zi,tpt−i


+ δwt , (10)

where

Zi,t =
1
T

+

(wt−i − wt−1)


T

i=1
γi,t (wt−i − wt−1)


T

i=1


(wt−i − wt−1)2

 . (11)

1 This is similar to Honkapohja and Mitra (2003) where a simplified version of
the model without state variable is considered.
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