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h i g h l i g h t s

• We study inequality indices of the cumulative distribution function.
• We derive their large sample distribution in a general framework.
• We provide a method for obtaining analytic standard errors.
• We give examples in the context of two families of inequality indices.
• We provide an application using Egyptian demographic and health data.
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a b s t r a c t

Inequality indices for self-assessed health and life satisfaction are typically constructed as functions of the
cumulative distribution function. We present a unified methodology for the estimation of the resulting
inequality indices. We also obtain explicit standard error formulas in the context of two popular families
of inequality indices that have emerged from this literature.

© 2015 Elsevier B.V. All rights reserved.

A literature on the measurement of inequality in relation to
ordered response data has emerged in the last ten years following
the work of Allison and Foster (2004). A large body of theoretical
literature has ensued, using the cumulative distribution function
as the main argument of the underlying ethical index.

Some authors (e.g. Apouey, 2007, Cowell and Flachaire, 2012)
have derived standard errors for the inequality indices they have
introduced. The present work complements these papers in that
it presents a unified methodology for the estimation of inequality
indices of the cumulative distribution function.

∗ Corresponding author. Tel.: +44 1224 272709.
E-mail address: r.abulnaga@abdn.ac.uk (R.H. Abul Naga).

1. Framework

Consider data on k ordered states of well-being (for example
self-reported health status or more generally life satisfaction). We
gather the responses (n1, . . . , nk) of n individuals from an under-
lying population p = (p1, . . . , pk) in a frequency distribution p̂ =

(p̂1, . . . , p̂k) where p̂i = ni/n is the proportion of individuals who
are in class i, and such that

k
i=1 ni = n. We denote P̂ = (P̂1, . . . ,

P̂k) the resulting cumulative distribution, where P̂j =
j

i=1 p̂i, and
we let D denote the set of cumulative distribution functions. An
inequality index for ordered response data is then some function
F : D → R+ with parameters reflecting some appropriately de-
fined inequality aversion axiom and other ethical properties. Two
difficulties arise in developing inference for ethical indices of the
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cumulative distribution. Firstly, the data analyst is confrontedwith
functions of counts or frequencies rather than the usual moments
of a continuous variable that are common in the income inequality
literature (Cowell, 1999), and secondly the ethical indexwill rarely
present itself in the form of a linear function of the cumulative dis-
tribution (though see below).

Let m ∈ {1, . . . , k} denote the median response state in some
given distribution P ∈ D. First, to give an example of an inequality
index that is linear in the cumulative distribution function, con-
sider the family of sub-group decomposable indices of Kobus and
Miłoś (2012):

Λa,b(P) =

a
m−1
i=1

Pi − b
k

i=m
Pi + c1 (k,m, a, b)

c2 (k,m, a, b)
a, b ≥ 0 (1.1)

c1(k,m, a, b) = b(k + 1 − m) (1.2)

c2(k,m, a, b) = (m − 1)
a
2

− (k + 2 − m)
b
2

+ c1. (1.3)

Here a and b are parameter values chosen by the data analyst in or-
der to reflect different social value judgements regarding inequal-
ity below, and above, the median health state m, and c1 and c2 are
normalization constants. Next consider the alphabeta family of in-
equality indices (Abul Naga and Yalcin, 2008):

∆α,β(P) =

m−1
i=1

Pα
i −

k
i=m

Pβ

i + c3(k,m, α, β)

c4(k,m, α, β)
α, β ≥ 1 (1.4)

c3(k,m, α, β) = k + 1 − m (1.5)

c4(k,m, α, β) = (m − 1)

1
2

α

− (k − m)


1
2

β

− 1 + c3. (1.6)

Likewise, α and β are parameter values chosen to reflect social
aversion to inequality below and above the median, and c3 and
c4 are constants. Note that the index ∆α,β(P) is only linear in P
in the specific case where α = β = 1, and furthermore that
∆1,1(P) = Λ1,1(P) for any distribution P . The above indices fea-
ture in studies aimed at quantifying health inequality in multiple
country contexts (e.g. Jones et al., 2011) and also in simulating the
envisaged effect of policy interventions on health inequality in the
context of specific pathologies (e.g. Arrighi et al., 2015).

2. Large sample distribution

The estimation of inequality indices of the type considered in
this paper can be treated in a unified framework as an estimation
of some non-linear function F(.) of an unknown cumulative dis-
tribution function P0, with associated probability distribution p0.
The Continuous Mapping Theorem then guarantees that under ap-
propriate assumptions F(P̂) will result in a consistent estimator of
F(P0).

Let cov(y) denote the covariance matrix of some random vec-
tor y and let Ω0 := cov(n

1
2 p̂). Since individuals select one and

only one of k possible responses, the covariance matrix Ω0 is said
to arise from a context of multinomial sampling. That is, writing
p0 = (p1, . . . , pk), we have that Ω0 is the following function of
the vector p0:

Ω0 =


p1(1 − p1) −p1p2 · · · −p1pk

−p2p1 p2(1 − p2) −p2p3 · · ·

...
...

. . .
...

−pkp1 −pkp2 · · · pk(1 − pk)

 . (2.1)

Observe then that, as a resulting of multinomial sampling, the
covariance matrix Ω0 will always be finite and positive semi-
definite.1

We next define the k-dimensional Jacobian vector of the trans-
formation F as follows:

J =

∂F/∂P1 · · · ∂F/∂Pk


, (2.2)

and throughout the paperwemaintain the following assumptions:

[A1] There is a finite number k of ordered states.
[A2] The n independent responses (n1, . . . , nk) defining the vec-

tor of frequencies p̂ = (p̂1, . . . , p̂k) are jointly distributed
from a multinomial distribution with parameters n and p0,
and such that cov(n

1
2 p̂) = Ω0, where Ω0 is a k × k positive

semi-definite matrix.
[A3] The function F : D → R+ does not involve n and is continu-

ously differentiable at the population distribution P0.

Our purpose here is to obtain the large sample distribution of
the sample estimator F(P̂) as a function of F(P0). The following
result (see for instance Anderson, 1996) will prove useful:

Lemma 1. Under [A1] and [A2] the vector of frequencies p̂ converges
to a k-variate normal distribution such that:

n1/2 p̂ − p0


−→ N (0; Ω0) . (2.3)

Because by construction
k

i=1 p̂i = 1, the resulting large sam-
ple distribution of p̂ in Lemma 1 is degenerate. Nonetheless, the
large sample distribution of the inequality index F(P̂) is non-
degenerate:

Proposition 2. Under [A1–A3] the sample inequality index F(P̂)
converges to a univariate normal distribution such that:

n1/2

F(P̂) − F(P0)


−→ N


0; J0LΩ0L′J ′0


(2.4)

where J0 := J(P0) is the Jacobian vector (2.2) evaluated at P0.

Proof. Define the k × k lower-triangular matrix L = {lst} such
that lst = 0 if s < t and lst = 1 if s ≥ t . Then L is a summa-
tion matrix such that P̂ = Lp and it follows straightforwardly from
Lemma 1 that n1/2


P̂ − P0


converges to a k-variate normal dis-

tributionN

0; LΩ0L′


. Also, from [A1–A2], the Law of Large Num-

bers entails that P̂ converges in probability to P0, whilst [A3] entails
that J(P̂) converges in probability to J(P0). It then follows from the
delta method that n1/2


F(P̂) − F(P0)


converges to a normal dis-

tribution N

0; J0LΩ0L′J ′0


. �

3. Jacobian vectors and standard errors

In the light of (2.4) in Proposition 2, the asymptotic distribution
of F(P̂) involves a quadratic form in the Jacobian vector J(.), eval-
uated at P0.

To clarify this point, define the matrix V0 = LΩ0L′. Then
the asymptotic variance of F(P̂) in Proposition 2 takes the form
J(P0)V0J ′(P0), where V0 is a positive semi-definite matrix. Consider

1 Specifically, because p1 + · · · + pk = 1, the matrix Ω0 will have a rank equal to
k − 1.
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