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h i g h l i g h t s

• We propose a residual-based test for fractional cointegration.
• The integration orders can be real-valued and the resulting cointegrating error can be stationary or nonstationary.
• The proposed test is simple to implement, has standard asymptotics and does not require a prescribed bandwidth.
• The proposed test has better power than the GPH test for unit-root series and has satisfactory sizes when other tests fail.
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a b s t r a c t

By allowing deviations from equilibrium to follow a fractionally integrated process, the notion of frac-
tional cointegration analysis encompasses a wide range of mean-reverting behaviors. For fractional coin-
tegrations, asymptotic theories have been extensively studied, and numerous empirical studies have been
conducted in finance and economics. But as far as testing for fractional cointegration is concerned, most
of the testing procedures have restrictions on the integration orders of observed time series or integrating
error and some tests involve determination of bandwidth. In this paper, a general fractional cointegration
model with the observed series and the cointegrating error being fractional processes is considered, and
a residual-based testing procedure for fractional cointegration is proposed. Under some regularity con-
ditions, the test statistic has an asymptotic standard normal distribution under the null hypothesis of no
fractional cointegration and diverges under the alternatives. This test procedure is easy to implement and
works well in finite samples, as reported in a Monte Carlo experiment.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past two decades, the concept of fractional cointegration,
which allows the equilibriumerror to follow a fractional integrated
process, has received much attention in the finance and econo-
metric literature. A partial list of some of the recent developments
in this area includes Cheung and Lai (1993) and Soofi (1998) who
test the purchasing power parity hypothesis, Baillie and Bollerslev
(1994) and Hassler et al. (2006), who investigate the memory of
exchange rates, and Booth and Tse (1995) and Dittmann (2000)
who explore the dynamic of interest rate future markets and stock
market prices, respectively. All of these studies detect evidence of
fractional cointegration and obtain satisfactory result under the as-
sumption that the observations are I(1) processes.
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Testing for fractional cointegration has subsequently been gen-
eralized to fractionally integrated processes. Robinson (2008) pro-
poses a test based on the joint local Whittle estimation of all
parameters, which rules out the possibility that the two under-
lying series have equal integration orders. For time series with
equal integration orders, Marinucci and Robinson (2001) propose
a Hausman-type test for no cointegration, which involves deter-
mination of a bandwidth. Marmol and Velasco (2004) construct a
Hausman-type test to test for the presence of fractional cointegra-
tion, with the additional assumption that the cointegration error is
nonstationary.

In this paper, we derive a general cointegration testing proce-
dure for two fractionally integrated processes with equal integra-
tion orders, which are assumed to be unknown. This test allows the
cointegrating error to be fractionally integrated without requiring
them to be nonstationary. The test is shown to be asymptotically
standard normal under the null hypothesis of no fractional cointe-
gration and diverges under the fractional cointegration alternative.
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The test is residual-based, which was initially suggested by Engle
andGranger (1987) and studied by Phillips andOuliaris (1990). The
methodology does not require further specification of the short-
run dynamics of the underlying processes because semiparamet-
ric estimates of the long-memory parameters and the long-run
covariancematrix are used. Only preliminary estimates of the inte-
gration orders of the underlying series and the regression residual
are needed. This test is easy to implement and does not require any
user-chosen number such as bandwidth.

The proposed test requires the integration orders of the ob-
served series to be equal, which can be determined by the residual-
based test proposed by Hualde (2013) or Wang (2008), both of
which are valid irrespective of whether the series are cointegrated.

In the next section, we present the testing procedure and
the asymptotic theory. Section 3 reports the empirical sizes and
powers of our test via a Monte Carlo study. Section 4 concludes.

2. Testing for fractional cointegration

Consider the following bivariate model (yt , xt)′, with prime
denoting transposition and t ∈ {0, ±1, ±2, . . .},

yt = βxt + ∆−δ
{ϑ1t1(t > 0)},

xt = ∆−d
{ϑ2t1(t > 0)}, (1)

where 1(·) is the indicator function, δ = 1−L, L is the lag operator,
d > 1/2, δ ≤ d, and υt = (υ1t , υ2t)

′ is white noise defined in
Assumption 1 below. We concentrate on the case that xt and yt
are both nonstationary with d > 1/2. The case δ < d indicates
the existence of fractional cointegration. By Taylor’s expansion,
∆−d

=


∞

j=0 πj(−d)Lj, πj(d) =
0(j+d)

0(d)0(j+1) for d ≠ 0, −1, −2, . . . ,
where 0(·) is the gamma function, taking 0(α) = ∞ for α =

0, −1, −2, . . . , 0(0)/0(0) = 1. Denote the k × k identity matrix
by Ik and the Euclidean norm by ∥ · ∥.

Assumption 1. Consider the process υt = A(L)ϵt , A(L) =


∞

j=0 Aj

Lj. Assume that

1.1. det(A(1)) ≠ 0 and


∞

j=1 j∥Aj∥
2 < ∞;

1.2. ϵt are i.i.d. vectorswithmean zero, positive definite covariance
matrixΩ , and E∥ϵt∥

q < ∞, for some q > max(4, 2/(2d−1));
1.3. fii(0) > 0, i = 1, 2, where fij(0) is the (i, j) element of the

spectral density of υt , denoted by f (λ).

Assumption 1 is common because it is satisfied by the usual
stationary and invertible autoregressive moving average (ARMA)
processes. This assumption is similar to Assumption 1 of Robin-
son and Hualde (2003), and Assumptions A–C of Marmol and Ve-
lasco (2004), which is a condition for applying the functional limit
theorem of Marinucci and Robinson (2000). Assumption 1.1 en-
sures that the limiting process of partial sum of υt has nondegen-
erate finite-dimensional distributions. Assumption 1.2 along with
Assumption 1.3 imply that f (λ) is Lip(γ ), γ > 0, which enables
one to obtain the asymptotic properties of the test statistic, see
Theorem 1 below. A larger d entails weaker moment conditions.
If d > 3/4, max(4, 2/(2d − 1)) = 4, then d has no restriction on
the moments of ϵt .

Under Assumption 1, model (1) means that xt and yt are both
type-II fractionally integrated I(d) processes and a linear combina-
tion yt − βxt is I(δ). In this way, the traditional I(1) cointegration
is a special case of model (1) with d = 1 and δ = 0.

Denote the regression residual in (1) by ut = yt − βxt , then ut
is an I(δ) process. Therefore, testing the hypothesis of no fractional
cointegration between yt and xt against existence of fractional
cointegration can be formulated as H0 : δ = d against H1 : δ < d.

To construct the test statistic, it is important to estimate δ and
d precisely, thus we impose the following assumption.

Assumption 2. Under both the null and the alternative hypothe-
sis,

2.1. there exists a positive constant K < ∞ and estimates d̂, δ̂ of
d and δ respectively, such that

|d̂| + |δ̂| ≤ K , (2)

and for some η > 0,

d̂ = d + Op(T−η), (3)

δ̂ = δ + Op(T−η); (4)

2.2. f̂ (0)
p

→ f (0), where
p

→ stands for convergence in probability.

Assumption 2.1 is the same as Assumption 3 of Robinson and
Hualde (2003) and Assumption 2 of Hualde and Velasco (2008).
Condition (2) is not restrictive if our estimates are optimizers of
the corresponding functions over compact sets. The parameter d
can be estimated from xt by parametric or semiparametric mem-
ory estimates, for example the approximate Gaussian maximum
likelihood estimates proposed by Beran (1995) or Whittle pseudo-
maximum likelihood estimation proposed by Velasco and Robin-
son (2000), thus condition (3) is easily satisfied.

Condition (4) is more subtle because β is unknown and hence
ut is unobserved. The estimate of δ requires a proxy ût , which is an
estimate of ut . Let β̂ be the Ordinary Least Squares (OLS) or Narrow
Band (NB, see Robinson andMarinucci (2001)) estimates ofβ . Then
under Assumptions 1.2 and 1.3, and some other mild conditions,
estimation of the memory parameter of residuals ût = yt − β̂xt
leads to a consistent estimate of δ under thenull and the alternative
hypotheses (cf. Velasco (2003), Hualde and Velasco (2008)).

Let F̂ = F(δ̂, f̂22(0)) =
T−1/2 

t ∆δ̂xt
(2π f̂22(0))1/2

be the test for H0 : δ = d
against the alternative H1 : δ < d.

Theorem 1. Let Assumptions 1 and 2 hold, xt and yt are defined
in (1), then F̂

d
→N(0, 1) under H0 and F̂ = Op(T d−δ) under H1,

where
d

→ stands for convergence in distribution.

Proof. Since ∆dxt = υ2t , which is an I(0) process, it follows
that F(δ, f22(0)) =

T−1/2 
t ∆−(d−δ)υ2t

(2π f22(0))1/2
. Under H0, F(δ, f22(0)) =

T−1/2 
t υ2t

(2π f22(0))1/2
, then F(δ, f22(0))

d
→N(0, 1) in view of the functional

limit theory of I(0) process. Under Assumptions 1 and 2, δ̂ and
f̂22(0) are consistent estimates of δ and f22(0). It can be proved
that F(δ, f22(0)) − F̂ = op(1) (see Appendix). Consequently F̂

d
→

N(0, 1). Under H1, ∆δxt is I(d − δ) since xt is I(d) process,
then T−1/2 T

t=1 ∆−δxt = Op(T d−δ), and further F(δ, f22(0)) =

Op(T d−δ). Since δ̂ and f̂22(0) are consistent estimates of δ and f22(0),
with Assumptions 1 and 2, it can be proved that F(δ, f22(0))− F̂ =

op(T d−δ) (see Appendix), thus F̂ = Op(T d−δ). �

3. Monte Carlo simulations

Monte Carlo experiments are conducted to examine the finite
sample performance of the test. Let (yt , xt)′ be generated from
model (1) with β = 1, υt = (υ1t , υ2t)

′ being a Gaussian white
noisewith E(vt) = 0, Var(v1t) = Var(v2t) = 1 and Cov(v1t , v2t) =

ρ. The initial values υ1t , υ2t , t ≤ 0 are set to be zero. We consider
caseswith ρ = 0 and 0.5, and sample sizes T = 100, 250, and 500.
Let d = 0.6, 0.8, 1, 1.2 and for a given d, let δ = d, d−0.2, d−0.4
and d−0.6. For a given set of (ρ, d, δ, T ) and β = 1, we obtain the
observed series yt , xt , t = 1, . . . , T , and further testing procedure
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