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h i g h l i g h t s

• I evaluate the performance of Sparse Grids Integration (SGI) and GHK simulator.
• I evaluate the performance of these estimators using Monte Carlo experiments.
• In lower dimension multivariate probit models SGI and GHK perform comparably.
• But as the dimension of integration or dependence among equations increases, the GHK outshines the SGI.
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a b s t r a c t

This paper evaluates the performance of a recently emerging multivariate quadrature-based Sparse Grids
Integration (SGI) and the well-known Geweke–Hajivassiliou–Keane (GHK) simulator in estimating mul-
tivariate binary probit models. Monte Carlo exercises demonstrate that in lower dimension multivariate
binary probit models, the multivariate quadrature-based SGI estimator with few quadrature points per-
forms very well and comparable with the GHK simulator. But as the dimension of integration or depen-
dence (error correlation) among equations increases, the GHK simulator outshines the SGI estimator. This
indicates that for integration problems involving higher dimensionmultivariate probit models, and those
with strong dependence among variables, the GHK simulator remains to be a more efficient approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Estimating correlated multivariate limited dependent variable
models involves evaluating intractablemultidimensional integrals.
There have been different approaches to approximate such multi-
dimensional integrals in computing likelihood functions in these
models; themost commonbeing simulation and quadrature-based
approaches.Within the simulation-based approaches theGeweke–
Hajivassiliou–Keane (GHK) simulator, named after Geweke (1991),
Hajivassiliou and McFadden (1998), and Keane (1994), is found
to be the most efficient approach (see Geweke et al., 1994; Haji-
vassiliou et al., 1996).1 Other competing alternatives to evaluate

E-mail address: Kibrom.Araya.Abay@econ.ku.dk.
1 Empirically, the GHK simulator has been commonly used in estimating un-

ordered multinomial probit models (see Train, 2009) and recently in an ordered
response framework (for example, Abay et al., 2013; Bhat et al., 2010).

multidimensional integrals in estimating discrete choice models
rely onmultivariate quadrature-based approaches. Recently, Heiss
and Winschel (2008) propose a multivariate quadrature based
on sparse grids constructed using the Smolyak rule (Smolyak,
1963), and they demonstrate that it can serve as a powerful al-
ternative to simulation approaches in evaluatingmultidimensional
econometric integrals. This approach, Sparse Grids Integration
(SGI), constructs nodes andweights formultivariate quadrature by
combining univariate quadrature rules as in the product rule but it
does by selecting fewer combinations in a more ‘‘clever’’ way, and
hence does not suffer from the curse of dimensionality.

However, the relative performance of the SGI has not been
evaluated in different econometric models involving multidimen-
sional integration problems. In this paper, I evaluate the perfor-
mance of the GHK simulator and the SGI estimator in estimating
multivariate binary probit models. Towards this end, I estimate a
fully-correlatedmultivariate binary probit model and compare the
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GHK simulator and the quadrature-based SGI approach in recover-
ing the ‘‘true’’ parameters of interest as well as in terms of their
computational cost. In comparing both integration approaches,
I implement Monte Carlo experiments considering progressively
increasing dimension of integration and alternative error corre-
lation structures. Such an investigation helps to identify alterna-
tive and more efficient estimation approaches that can ease the
complexity and computational cost of the existing techniques in
estimating discrete choice models. Furthermore, the relative per-
formance of the GHK simulator and the quadrature-based SGI es-
timator may vary depending on the dimension and dependence
structure of the integration problem. Hence, evaluating the rela-
tive advantages of these alternative integration approaches in es-
timatingmultivariate probitmodels of different type and structure
is crucial.

2. Model and estimation approaches

2.1. Multivariate binary probit model

Consider the following series of M-variate fully-correlated la-
tent continuous (unobserved) outcomes of interest representing a
sequence of M different binary outcome variables or a univariate
binary outcome of interest atM different times:

ynm∗
= β ′Xnm + εnm (1)

where n = 1 . . .N stands for individuals and m = 1 . . .M stands
for the number of binary outcome variables or choice situations
of interest. This model can be used to model correlated package
of binary outcome variables or a panel univariate model with un-
restricted error covariance structure across time. But for conve-
nience, this paper focuses on a cross-sectional multivariate probit
model specification. As usual, the relation between these latent
continuous outcomes and the observed sequence of binary out-
comes can be expressed as:

ynm =


1 if ynm∗ > 0
0 if ynm∗

≤ 0.

In the above formulation, the regression parameters are fixed to be
equal across equations for simplicity. The error terms of the series
of equations, εn = (εn1, εn2 . . . εnM), are identically and inde-
pendently distributed across individuals but allowed to be fully-
correlated across equations. To complete the model structure, one
needs to be explicit about the distribution and structure of the
M-variate error terms of the equations. In this paper, the corre-
lated error terms of the equations are assumed to be distributed
multivariate normal as εn ∼ MVNM(0, ΣM), with ΣM assuming
the following structure:

6M =


1 ρ12 ρ13 · · · ρ1M

ρ21 1 ρ23 · · · ρ2M
. . .. ..
. . .. ..

ρM1 ρM2 ρM3 · · · 1

 . (2)

The diagonal elements in the above matrix are normalized to be 1
for identification purpose. Given this structure, we can construct
the likelihood function for all possible response outcomes consid-
ered. For instance, the probability that an individual chooses ‘‘1’’ in
all binary choice variables can be written as:
Pr(yn1 = 1, yn2 = 1, . . . , ynM = 1)

= L(β, Σ) =

 β ′Xn1

ℓ1=−∞

 β ′Xn2

ℓ2=−∞

. . .

 β ′XnM

ℓM=−∞

φM (ℓ1, ℓ2,

ℓ3, . . . ℓM|


M


dℓ1, dℓ2 . . . dℓM (3)

whereφM(·) stands for anM-variate standard normal density func-
tion.

2.2. Estimation approaches

Evaluating the above joint probability for a sequence of events
entails M-dimensional rectangular integration for each individual.
This integrand can be approximated using simulation approaches,
and within these approaches the GHK simulator is found to be the
most efficient method to approximate multidimensional integrals
of the form in Eq. (3). The GHK simulator works based on recursive
conditioning of multivariate outcomes or sequence of outcomes.
For instance, the joint probability that an individual chooses ‘‘1’’
in all binary choice variables considered can be expressed as a
product of conditional probabilities as:
Pr(yn1 = 1, . . . , ynM = 1)

= pr(yn1 = 1) pr(yn2 = 1|yn1 = 1) . . . pr(ynM
= 1|ynm − 1 = 1, . . . , yn1 = 1). (4)

This joint probability for a sequence of events involves condition-
ing on prior events, which are all correlated due to the allowance
of a correlated error structure. For convenience, we can express the
correlated error structure as εn = (εn1, εn2 . . . εnM), as εn = Cηn,
where C stands for the lower triangular matrix of the Cholesky
decomposition of the correlation matrix ΣM , while the random
terms ηn are now uncorrelated to each other and distributed as
ηn ∼ MVNM(0, IM). Train (2009) provides a brief exposition on all
steps in implementing the GHK simulator.

Another competing approach to evaluate multidimensional in-
tegrals of the type in Eq. (3) is an approximation based on multi-
variate quadrature. Multivariate quadrature based on simple
tensor product of univariate quadrature rules involves exponen-
tially increasing computational cost. Heiss and Winschel (2008)
propose a multivariate quadrature on sparse grids constructed
by the Smolyak rule, and they demonstrate its powerful per-
formance in estimating mixed-logit models. The notion of the
Smolyak rule assumes that some tensor product combinations are
more important than others, and it provides a design to strate-
gically select few tensor product combinations satisfying some
criteria. Judd et al. (2013) best describe the Smolyak rule as a de-
sign that indicates which tensor product combinations should be
selected for constructing multivariate (sparse grids) quadrature.
Compared to the conventional tensor product rule way to expand
univariate quadrature to multiple dimensions, constructing multi-
variate quadrature using the Smolyak rule reduces computational
cost dramatically (see Heiss andWinschel, 2008; Judd et al., 2013).

To formally express the way the Smolyak rule selects the most
important tensor product combinations, let i be a unidimensional
accuracy level that defines a sequence of univariate quadrature
rules (for each dimension) Qi1,Qi2 . . .QiD which generate a
sequence of Ri1, Ri2 . . . RiD univariate quadrature points and
corresponding wi1, wi2 . . . wiD weights. Furthermore, let k be the
underlying accuracy level chosen for constructing a multivariate
quadrature of dimension D.2 Then, the Smolyak rule selects tensor
products with different possible combinations of accuracy levels
i = [i1, i2 . . . iD] which satisfy that max(D, k + 1) ≤ |i| =D

d=1 id ≤ D + k (see Judd et al., 2013). With this criteria, and as
described in Heiss and Winschel (2008), and Judd et al. (2013) the
Smolyak rule combines univariate quadrature rules in such away3:

Q D
k =


max(D,k+1)≤|i|≤D+k

(−1)D+k−|i|


D − 1
D + k − |i|


× (Qi1 ⊗ Qi2 . . . ⊗ QiD) (5)

2 This underlying level of accuracy is the parameter that controls the number
of tensor product combinations to be constructed. Higher level of this parameter
implies larger number of tensor product combinations are chosen.
3 For a more general treatment and examples, the reader is referred to Heiss and

Winschel (2008), and Judd et al. (2013).
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