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h i g h l i g h t s

• Residuals from a NS model do not adhere to the familiar white noise assumption.
• An adjustment is proposed and backtested with a focus on forecasting performance.
• Large improvement in forecasting power is achieved over time and across yields.
• Gains are robust to different time periods and to different model specifications.
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a b s t r a c t

When the yield curve is modelled using an affine factor model, residuals may still contain relevant
information and do not adhere to the familiar white noise assumption. This paper proposes a pragmatic
way to improve out of sample performance for yield curve forecasting. The proposed adjustment is
illustrated via a pseudo out-of-sample forecasting exercise implementing the widely used Dynamic
Nelson–Siegel model. Large improvement in forecasting performance is achieved throughout the curve
for different forecasting horizons. Results are robust to different time periods, aswell as to differentmodel
specifications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The yield curve is key statistic for the state of the economy,
widely tracked by both policy makers andmarket participants. Ac-
curate prediction of the curve is of great use for investment deci-
sion, risk management, derivative pricing and inflation targeting.
It is therefore no surprise to witness the vast literature related to
the modelling and forecasting of the term structure.

Notable landmarks are the earlywork of Vasicek (1977) and Cox
et al. (1985) through Duffie and Kan (1996) and Dai and Singleton
(2002), all of which focus on the class of affine term structure
models, and Hull and White (1990) and Heath et al. (1992), who
focus on fitting the term structure under no arbitrage restrictions.
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A popular choice for a prediction model is the one put
forward by Diebold and Li (2006) (henceforth DL). They suc-
cessfully demonstrate how a variant of the Nelson–Siegel model
(Nelson and Siegel, 1987) can be used for prediction. The model
itself is essentially a commonparametric function,which is flexible
enough to describe themany possible shapes assumed by the yield
curve. In their seminal paper from2006, DL build a dynamic frame-
work for the entire yield curve, a dynamic Nelson–Siegel model
(henceforth NS). Factors are estimated recursively using standard
cross-sectional OLS, and evolve according to an AR(1) process. This
approach has at least two appealing aspects. First, time-varying pa-
rameters can be easily interpreted as the well-known triplet level,
slope and curvature. These three latent factors have been shown
to be the driving force behind the yields co-movement (Litterman
and Scheinkman, 1991). Second, estimation is easy and robust, an-
alytical solution is at the ready which makes recursive estimation
simple and fast. This is in stark contrast to a Maximum-Likelihood
estimation which despite being theoretically more efficient
(conditional on normality assumptions) is prohibitively compu-

http://dx.doi.org/10.1016/j.econlet.2015.01.022
0165-1765/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.econlet.2015.01.022
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2015.01.022&domain=pdf
mailto:eran.raviv@apg-am.nl
http://dx.doi.org/10.1016/j.econlet.2015.01.022


E. Raviv / Economics Letters 129 (2015) 112–115 113

tationally expensive, sensitive to starting values and sensitive to
search algorithm used.

At the very heart of affine term structure models, lies the de-
composition of the curve into the common part and the idiosyn-
cratic part.When the yield curve is properly spanned by a small set
of common factors, the idiosyncratic part can be treated as white
noise. Specifically, there should be no autocorrelation or bias once
underlying factors are accounted for. However, in practice, it may
not be the case. Model errors may exhibit clear deviations from
those assumptions. This issue has recently gained increased atten-
tion. Hamilton and Wu (2011) and Duffee (2011) document term
structuremodel errors that exhibit high serial correlation. In terms
of forecasting, Bauer et al. (2012) claim that parameters of a dy-
namic term structure model incur small-sample bias.

Usually, we target the yields themselves, factor modelling is a
means to an end. Here we suggest a pragmatic way to correct for
the effect brought about by this bias, working directly with out-
of-sample model errors. Once errors deviate from the white noise
assumption, a simple correction is applied to directly extract re-
mains of information. As recently been suggested, conditional on
the existence of such bias, this has the potential to improve fore-
casting performance.

We empirically illustrate this point using the NS model, but
the procedure is valid for any factor model used. The NS model is
compared favourably in terms of forecasting performance to other
less parsimonious models (Mönch, 2008, for example). The model
fits the curve well, however, the residuals from the fit over time
exhibit (1) strong autocorrelation and (2)meanwhich significantly
deviates fromzero. These stylized facts can be exploited to improve
prediction.

The next section motivates and presents the proposed adjust-
ment. Section 3 presents the empirical results while Section 4 con-
cludes. In an Appendix the interested reader can find results from
other term structure model specifications which are considered as
a robustness check.

2. The model and the proposed bias correction

For the yield curve of interest rates, using thewell known latent
factor model suggested by Nelson and Siegel (1988), the loadings
are predetermined functions of maturity τ . The representation
given by Diebold and Li (2006) to this model is given by:

yt(τ ) = β1,t + β2,t


1 − exp(−λtτ)

λtτ


+ β3,t


1 − exp(−λtτ)

λtτ
− exp(−λtτ)


+ εt , (1)

where available maturities at time t , τ = {τ1, . . . , τM}.
The parameter β1 can be interpreted as the long-term interest

rate, or a ‘‘leve’’ factor. The parameter β2 determines how fast
we the yield approaches its long term value, and is known as the
‘‘slope’’ factor. The parameter β3 determines the size and shape
of the hump, and is known as the ‘‘curvature’’ factor. Lastly, the
parameter λt determines the decay rate for the loadings on the
second factor, and thematurity atwhich loading on the third factor
is maximized.1 In the special case where λt = λ ∀t , the factors
βt are obtained using a simple cross sectional regression across
available maturities at time t . The residuals εt = {εt,1, . . . , εt,M}

are assumed to be white noise. Note that the assumption concern
the cross sectional aspect of the model, and do not necessarily
hold over time. To be more specific, the model does not assume
residuals that are independent over time, nor that factor’s volatility

1 A more detailed description can be found in Diebold and Rudebusch (2013).

are constant over time. For example Hautsch and Yang (2012)
show that by extracting time varying volatility components, mean
forecasts may be similar yet sharper densities are produced,
testifying to decreased forecast uncertainty.

The h-step-ahead prediction is given by:

yt+h(τ ) = β1,t+h + β2,t+h


1 − exp(−λtτ)

λtτ


+β3,t+h


1 − exp(−λtτ)

λtτ
− exp(−λtτ)


(2)

withβt+h = α + Γβt , (3)

where βt is a 3 × 1 vector, as is α. Γ is a 3 × 3 coefficient ma-
trix which may or may not be diagonal. Arguments can be raised
in favour and against a diagonal restricted Γ matrix. Diagonal re-
strictedΓ has less parameters so less estimation uncertainty, more
parameters may result in a noisier forecast. However, unrestrictedΓ allows for conditional cross-correlation between factors which
may be important. In the forecasting exercise we use a diagonal
restricted Γ as advocated in Diebold and Li (2006). Results from
the fully parametrized Γ are presented in subsequent section for
completeness.

Now define the out-of-sample forecasting errors from the
chosen forecasting model as:

et+h(τ ) = yt+h(τ ) −yt+h(τ ).

The mapping between the factors and the yields is done using
cross sectional projection. Therefore there is a possibility that the
residuals over time, still contain information to be exploited. The
information can be in the formof errorswhich have non-zeromean
or strong autocorrelation, features that can be observed even for
the in-sample residuals.

A pragmatic way to extract potential remains of information is
by using an AR model, so that the forecast for the out-of-sample
error is obtained by:et+h(τ ) = δ(τ , h) + ρ(τ , h)et(τ ). (4)

In this equation δ is interpreted as the bias of the forecast, and ρ
is the autocorrelation coefficient. Keeping our focus on prediction,
the adjusted forecast is given by:yadjt+h(τ ) = yt+h(τ ) +et+h(τ )

= yt+h(τ ) +δ(τ , h) +ρ(τ , h)et(τ ). (5)

The parameters δ and ρ are estimated using a direct projection of
the out-of-sample errors on their past, in the samemanner that we
determine the AR coefficients for factors dynamics. In essence, we
extract potential information in model errors and use it to adjust
our prediction for the next period.

3. Empirical results

In this section we describe the data, followed by estimation
methods and forecasting results using our proposed adjustment.

3.1. Data description

We use the same data as in DL (2006), a balanced panel data
of 17 maturities.2 The last data point in their dataset is 12/2000.

2 The data can be downloaded from http://www.ssc.upenn.edu/∼fdiebold/
papers/paper49/FBFITTED.txt. A summary statistics table can be found in the
Appendix along with a plot of the data and the NS-based factors.
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