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• We investigate spatial panel data models with time varying spatial weights matrices.
• Asymptotic properties of QMLE is derived.
• Estimation and inference for the impact analysis are studied.
• Simulations show that parameter and impact estimators have satisfactory performance.
• Simulations show that misspecification of weights matrices causes substantial biases.
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a b s t r a c t

This paper investigates the quasi-maximum likelihood (QML) estimation of spatial panel data models
where spatial weightsmatrices can be time varying.We show that QML estimate is consistent and asymp-
totically normal. We also derive the asymptotic distribution of average impact coefficients (direct, indi-
rect, total). Monte Carlo results are reported to investigate the finite sample properties of QML estimates
and impact coefficients.
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1. Introduction

For spatial panel data models, the spatial weights matrix can
be constructed from economic/socioeconomic distances or demo-
graphic characteristics, whichmight be changing over time. For ex-
ample, in panel data setting, Case et al. (1993) construct a weights
matrix based on the difference in the percentage of the population
that is black; Baicker (2005) constructs a weights matrix with the
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degree of population mobility between regions. One may wonder
whether we can easily handle the models with time varying spa-
tialweights, andwhether ignoring time variation in spatialweights
matrices would have substantial consequences on estimates. Lee
and Yu (2012) investigate the time varying weights matrices in a
dynamic spatial panel model setting, where the number of time
periods T is assumed to be large. In the current paper, we consider
the static spatial panel model with both individual and time fixed
effects, where T could be finite or large.

For the estimation and statistical inference of impact effects,
LeSage and Pace (2009) provide a computationally efficient sim-
ulation approach to produce empirical estimates of dispersion for
scalar summary measures of impacts. Debarsy et al. (2012) extend
the preceding approach to the dynamic spatial panel data models
with a time invariant spatial weights matrix. Elhorst (2012) pro-
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vides Matlab routines for the bias-corrected estimates in Lee and
Yu (2010) and relevant impact analysis. The current paperwill pro-
vide analysis for those impacts based on quasi-maximum likeli-
hood (QML) estimators.

The rest of the paper is organized as follows. Section 2 intro-
duces the model and establishes asymptotic properties of QML
estimators. Section 3 investigates the impact estimates and their
asymptotic inference. Section 4 provides Monte Carlo results. Sec-
tion 5 concludes the paper. Due to space limit, lemmas and proofs
are collected in a supplement file available upon request (see
Appendix A).

2. The model and asymptotic properties of the QML estimate

The model considered is

Ynt = λ0WntYnt + Xntβ0 + cn0 + αt0ln + Vnt ,

t = 1, 2, . . . , T , (1)

where Ynt = (y1t , y2t , . . . , ynt)′ and Vnt = (v1t , v2t , . . . , vnt)
′ are

n × 1 column vectors, and vit ’s are i.i.d. across i and t with zero
mean and variance σ 2

0 . The Xnt is an n × K matrix of individually
and time varying nonstochastic regressors, cn0 is an n × 1 column
vector of individual effects, and αt0 is the tth element of the T × 1
fixed time effect vector αT0 with ln being n × 1 vector of ones. The
spatial weights matrix Wnt is nonstochastic and it could be time
varying.1 We assume thatWnt is row-normalized.2

Similar to Lee and Yu (2010), we can use the eigenvector ma-
trix of Jn = In −

1
n lnl

′
n to eliminate the time effects. However, we

will directly estimate the individual effects.3 By denoting Snt(λ) =

In − λWnt for an arbitrary λ, X̃nt = Xnt −
1
T

T
t=1 Xnt , and θ =

(β ′, λ, σ 2)′, the concentrated log likelihood (with cn and αt con-
centrated out) is

ln Ln,T (θ) = −
(n − 1)T

2
ln 2π −

(n − 1)T
2

ln σ 2
− T ln(1 − λ)

+

T
t=1

ln |Snt(λ)| −
1

2σ 2

T
t=1

Ṽ ′

nt(θ)JnṼnt(θ), (2)

1 The elements of Wnt can be constructed from h(zit , zjt ) where h is a bounded
function and zit contains some economic/socioeconomic distances information.
Thus, the evolution of Wnt would be determined by the evolution of zit . Also, if zit
is uncorrelated with vit , Wnt is exogenous. If zit is correlated with vit , Wnt is then
endogenous and relevant specification and estimation are beyond the scope of the
current paper.
2 Row normalization is convenient for parameter interpretation of λ; however,

it usually changes the information content of the initial (non-normalized) weights
matrix since each row is divided differently from the other. For instance, if the
weights are based on inverse distance, row normalization will convert absolute
distance into relative ones, which makes a big difference from the economic
viewpoint (see Baltagi et al., 2008). There is also matrix normalization in Kelejian
and Prucha (2010) that keeps the same information content and does not have
such drawbacks. From estimation point of view for the panel data setting such
as (1), if time effects αt0ln is not present, the estimation procedure in the current
paper can be applied to both row normalization and matrix normalization cases.
When time effects αt0ln is present, row normalization can still keep the SAR form
of the model after the data transformation to eliminate the time effects; however,
matrix normalization has to estimate the time effects directly so that the incidental
parameter problem will occur with the bias magnitude O( 1

n ).
3 We can eliminate the individual effects by eigenvector matrix of JT =

IT −
1
T lT l

′

T . But, due to the time varying feature of spatial weights matrices,
the transformed equation is no longer an SAR process and the QML approach
cannot be applied directly. To see this, denote (FT ,T−1 , lT /

√
T ) as the orthonormal

matrix of eigenvectors of JT and [Y ∗

n1, . . . , Y
∗

n,T−1] = [Yn1, . . . , YnT ]FT ,T−1 as
the transformed dependent variables. When Wnt is time invariant, [WnYn1, . . . ,

WnYnT ]FT ,T−1 = Wn[Yn1, . . . , YnT ]FT ,T−1 = Wn[Y ∗

n1, . . . , Y
∗

n,T−1] is the spatial lag
of [Y ∗

n1, . . . , Y
∗

n,T−1] so that we still have the SAR form. When Wnt is time varying,
[Wn1Yn1, . . . ,WnTYnT ]FT ,T−1 cannot be written as a spatial lag of [Y ∗

n1, . . . , Y
∗

n,T−1].
Thus, we will adopt a direct approach where we eliminate the time effects but
estimate the individual effects directly.

where Ṽnt(θ) = Snt(λ)Ynt − X̃ntβ with Snt(λ)Ynt = Snt(λ)Ynt −

1
T

T
t=1 Snt(λ)Ynt and JnṼnt(θ) = Jn[ Snt(λ)Ynt−X̃ntβ−α̃t ln]because

Jnln = 0.
For asymptotic analysis of the QML estimators, we assume the

following regularity conditions.

Assumption 1. Wnt ’s are row-normalized nonstochastic spatial
weights matrices with zero diagonals.

Assumption 2. The disturbances {vit}, i = 1, 2, . . . , n and t =

1, 2, . . . , T , are i.i.d. across i and t with zero mean, variance σ 2
0

and E |vit |
4+η < ∞ for some η > 0.

Assumption 3. The elements of Xnt , cn0 and αT0 are nonstochastic
and bounded, uniformly in n and t . Also, limn→∞

1
nT

T
t=1 X̃

′
nt JnX̃nt

exists and is nonsingular.

Assumption 4. Snt(λ) is invertible for all t and for allλ ∈ Λ, where
the parameter space Λ is compact and λ0 is in the interior of Λ.

Assumption 5. Wnt ’s and S−1
nt (λ)’s are uniformly bounded (uni-

formly in t for Wnt ’s, and uniformly in λ ∈ Λ and t for S−1
nt (λ)’s)

in both row and column sums in absolute value.

Assumption 6. n is large, where T can be finite or large.

In Lee and Yu (2010)with time invariant weightsmatrix, the di-
rect approach (estimating the individual effects directly) will yield
bias for the variance parameter. Denote θT = θ0−(01×(K+1),

1
T σ 2

0 )′.
The asymptotic analysis for the direct approaches is based on θT .
For the time varying spatial weights matrices case in the current
paper, because we transform the data to eliminate the time effects
but directly estimate the individual effects, we expect that the bias
for the variance parameter remains. Thus, we will similarly base
our asymptotic analysis on θT , and make bias correction for the
variance parameter.

Denoting Gnt = WntS−1
nt , GntXnt = GntXnt −

1
T

T
t=1 GntXnt

and G̃nt = Gnt −
1
T

T
t=1 Gnt . The information matrix ΣθT ,nT =

−E


1
(n−1)T

∂2 ln Ln,T (θT )

∂θ∂θ ′


is equal to

ΣθT ,nT =
1
σ 2
T


EH c

nT ∗

01×(K+1) 0



+



0K×K ∗ ∗

01×K
1

(n − 1)T

T
t=1


tr(G′

nt JnGnt) + tr((JnGnt)
2)


∗

01×K
1

σ 2
T (n − 1)T

T
t=1

tr(JnGnt)
1

2σ 4
T

 , (3)

where H c
nT =

1
(n−1)T

T
t=1(X̃nt , ( GntXntβ0 + G̃ntcn0))′

Jn(X̃nt , ( GntXntβ0 + G̃ntcn0)). The limit of ΣθT ,nT is nonsingular if
limn→∞ EH c

nT is nonsingular or

lim
n→∞


1

(n − 1)T

T
t=1


tr(G′

nt JnGnt) + tr((JnGnt)
2)


− 2


1
T

T
t=1

tr(JnGnt)

n − 1

2
 ≠ 0. (4)

For asymptotic distribution, denote byΩθT ,nT the equation given in
Box I.
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