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h i g h l i g h t s

• An asset pricing model with recursive preferences is specified.
• The model is estimated under the assumption of adaptive learning.
• Both of these sources of volatility account for fluctuations in liquid stock markets.
• However, only risk aversion matters for illiquid housing markets.
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a b s t r a c t

We estimate the relative contribution of recursive preferences versus adaptive learning in accounting for
the tail thickness of price–dividends/rents ratios. We find that both of these sources of volatility account
for volatility in liquid (stocks) but not illiquid (housing) assets.
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1. Introduction

In analyzing sources of volatility in asset pricing models two
mechanisms stand out: learning and the adoption of recursive
preferences. The former attributes volatility in asset prices to
processes via which an agent comes to know of underlying
fundamentals. The latter requires the agent to care about when
uncertainty is resolved, determined entirely by preferences for risk
and intertemporal substitution. Benhabib and Dave (2014) suggest
that, in a single asset version of Lucas (1978), adaptive learning
via a constant gain stochastic gradient (CGSG) algorithm causes
the stationary distribution of the price–dividends ratio (PDR) to
exhibit fat tails despite dividends being modeled as a thin-tailed
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process. These fat tails are shown to vary as a function of the
deep parameters of the model, and the large deviations of the
PDR from its rational expectations equilibrium value are able to
account for the volatility in stock indices. Here we investigate
the empirical contribution of a recursive preference formulation,
following Epstein and Zin (1989, 1991), to the learning and large
deviations model for both the stock and housing markets.

Why this particular formulation? The estimates provided in
Benhabib and Dave (2014) of the CRRA coefficient are high.
High estimates of the CRRA coefficient are common in empirical
consumption asset pricing and warrant further investigation.
Further, Benhabib and Dave (2014) show that the higher the CRRA
coefficient, the thicker the tails of the stationary distribution of
the PDR; it would be useful to have low CRRA estimates and still
account for the thick tails due to a learning algorithm. Given the
elegant manner in which recursive preferences separate out the
effects of risk aversion and intertemporal substitution, perhaps
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their adoption is sufficient to ‘‘break out’’ a high CRRA coefficient
estimate into its constituent components whilst still retaining
a role for learning. Further, simulations can indicate whether
the tails of the stationary distribution of the PDR thicken as
the parameterized preferences for risk and the desire to smooth
consumption intertemporally increase. Finally, by comparing
estimates fromS&P 500 data versus an illiquid housingmarket, one
can further focus on the three forces that could affect the thickness
of the tail of a PDR or price–rent ratio (PRR) series: risk aversion,
intertemporal substitution and learning.

Our investigation does deliver the sought-after results. Allow-
ing for recursive preferences with S&P 500 data suggests an esti-
mate for the CRRA coefficient of around 2.5 and an estimate for the
inverse elasticity of intertemporal substitution of around 1.2. Fur-
ther, as these parameters increase, the tail index of the PDR that
governs the thickness of its tails does fall. The higher the CRRA
coefficient or the inverse elasticity of intertemporal substitution,
the smaller is the number of moments associated with the tail of
the stationary distribution of the PDR. Finally, the estimate of the
learning gain does not changemuch relative to Benhabib and Dave
(2014), indicating that learning continues to play a strong role in
determining volatility in the S&P 500. With housing data, we find
that the estimate of the gain parameter, which in part governs the
effect of learning on the tail of the stationary distribution of the
PRR, comes with a very large standard error. However, the relative
risk aversion parameter is precisely estimated. This suggests that
for the housing market a main driver for the thickness of tail of the
stationary PRR is risk aversion, an expected result given the illiquid
nature of housing as an asset.

In the next section we specify the model under recursive
preferences, and then provide minimum distance estimates of
its parameters in Section 3. We discuss simulated ‘‘comparative
statics’’ results in Section 4 and conclude in Section 5 with a
description of how the formulation of models as linear recursions
with multiplicative noise can assist in characterizing data (and
models) that exhibit fat tails and thus the possibility of rare
disasters.

2. The model

Under recursive preferences the representative agent optimizes
(1 − β)C1−γ

t + βU∗1−γ
t+1

 1
1−γ

, β ∈ (0, 1) (1)

subject to the usual constraints, where β is the discount factor. The
inverse of the parameter γ > 0 is the intertemporal elasticity of
substitution. Certainty equivalent future utility is given by

U∗
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where the parameter α > 0 is the relative risk aversion coeffi-
cient.1 The stochastic discount factor is
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Defining wealth as the present value of consumption
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the return to wealth is
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1 When γ = α we have the standard time-separable CRRA preference specifica-
tion.

yielding the stochastic discount factor
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If stocks are the only wealth, and consumption is the same as
dividends (Dt ) in equilibrium, we have the single asset pricing
equation
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Let κ =
1−α
1−γ , then in the steady state
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The linear approximation is
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We let D = 1 to obtain the linearized equation

pt = γ dt + ηEt(dt+1)+ β
1
κ Et(pt+1),

η =


1 − β

1
κ

κ 
β

1
κ

1−κ (10)

where all lowercase variables denote log-deviations from steady

state (P,D) =


β

1
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, 1

.

Assume that the exogenous dividends process follows

dt = ρdt−1 + εt , |ρ| < 1, εt ∼ i.i.d.(0, σ 2
ε ), σ

2
ε < +∞ (11)

with compact support [−a, a], a > 0. Then from this process for
dividends we know that

Et(dt+1) = ρdt (12)

and so
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κ Et(pt+1)+ θdt , θ ≡ γ + ηρ,
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is the fundamental expectational difference equation under
investigation.

The REE value of φ is given by

φREE
=

θρ

1 − β
1
κ ρ

(14)

which is unique and finite for all β
1
κ ρ ≠ 1 so we assume that

condition holds.
For learning we conjecture that

pt = φt−1dt−1 + ξt , ξt ∼ i.i.d.(0, σ 2
ξ ), σ

2
ξ < +∞ (15)

implying

Et(pt+1) = φt−1dt (16)
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