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h i g h l i g h t s

• The aggregation of individual AR(1) models is an infinite AR process.
• We estimate the aggregate process when only macro data is available.
• A parametric and a minimum distance estimator for the aggregate dynamics are proposed.
• The estimators recover the moments of the distribution of the AR parameters.
• The estimators perform very well, even with finite samples.
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a b s t r a c t

The aggregation of individual random AR(1) models generally leads to an AR(∞) process. We provide
two consistent estimators of aggregate dynamics based on either a parametric regression or a minimum
distance approach for usewhenonlymacro data are available. Notably, both estimators allowus to recover
some moments of the cross-sectional distribution of the autoregressive parameter. Both estimators
perform very well in our Monte-Carlo experiment, even with finite samples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Aggregation is a critical and widely acknowledged issue in the-
oretical and empirical economics research. As noted by Pesaran
and Chudik (2014), among the different aspects of the aggrega-
tion problem, the identification and estimation of certain distribu-
tional features of the micro-parameters from aggregate relations
are important issues, especially when only macro data are avail-
able (Robinson, 1978; Granger, 1980; Forni and Lippi, 1997). No-
tably, identifying such features requires the researchers to derive
the optimal aggregate function and to make explicit the back out
between ‘‘macro’’ and ‘‘micro’’ parameters. Yet, only a few papers
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have examined the reliability of macro information in circumvent-
ing the aggregation bias in the presence of unobserved micro het-
erogeneity (Lewbel, 1994; Pesaran, 2003; Carvalho andDam, 2010;
Mayoral, 2013). Our paper contributes to this stream of the liter-
ature by providing a solution to this problem for autoregressive
models when the time-series and cross-sectional dimensions are
both large.

We propose two consistent estimation techniques that rely on
a flexible parametric specification of the distribution of the micro-
parameters and on the estimation of the hyper-parameters of this
cross-sectional distribution. The first method is based on maxi-
mum likelihood estimation, while the second method is based on
minimumdistance estimation. Bothmethods explicitly account for
the set of non-linear restrictions that drive the aggregate parame-
ters and allowus to recover reliable information on the distribution
of the micro-parameters. Using Monte Carlo simulation, we show
that both methods perform very well, even with relatively small
samples.
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2. The model

Consider the random AR(1) model for i = 1, . . . ,N:

xi,t = ρi xi,t−1 + vi,t , (1)

where ρi denotes an individual-specific random parameter and
vi,t is an error term. For instance, such dynamics may represent
consumption expenditures across households (Lewbel, 1994), con-
sumer price inflation across subindices (Altissimo et al., 2009), real
exchange rates across sectors (Imbs et al., 2005), or real marginal
cost across industries (Imbs et al., 2011). Innovation vi,t is de-
composed into a common component (ϵt ) and an idiosyncratic
(individual-specific) component (ηi,t ):

vi,t = κi ϵt + ηi,t , (2)

where κi denotes a scaling parameter. The macro variable results
from the aggregation ofmicro-units, with the use of time-invariant
nonrandom weights WN = (w1, . . . , wN)′, with

N
i=1 wi = 1,

so that XN,t =
N

i=1 wixi,t . The cross-sectional moments of ρ are
ẼN (ρs) =

N
i=1 wiρ

s
i , for all s = 1, 2, . . . . Moreover, the following

assumptions hold:

Assumption 1. |ρ| ≤ c < 1 almost surely for some constant c .
Random parameters have finite variance and higher moments.

Assumption 2. ϵt and ηi,t are white noise processes with mean
zero and variance σ 2

ϵ and σ 2
η , respectively; ϵt and ηi,t are mutually

orthogonal at any lag and lead; {ϵ, ηi} and {ρi, κi} are mutually in-
dependent for all i; ρi and κi are mutually independent; E(κ) = 1.

Assumption 3. As N → ∞, ∥WN∥ = O

N−1/2


and wi/ ∥WN∥ =

O

N−1/2


for all i ∈ N.

Assumption 1 guarantees that there are no individual unit root
parameters that would dominate at the aggregate level (Zaffa-
roni, 2004). This assumption implies that the limit aggregate (as
N → ∞) has a short memory with an exponentially decaying
autocorrelation function.1 Eqs. (1) and (2) together with Assump-
tion 2 provide a parsimonious form of (statistical) cross-sectional
dependence, which is common in the aggregation literature (Forni
and Lippi, 1997; Zaffaroni, 2004). The aggregation mechanism de-
pends solely on the characteristics of the common component of
the error term, i.e., our specification and assumptions rule out the
presence of an idiosyncratic component at the aggregate level.2

Assumption 3 is a granularity condition, which insures that the
weights are not dominated by a few of the cross-sectional units
(Gabaix, 2011; Pesaran and Chudik, 2014).3

3. Aggregate dynamics

Using the moving average (MA) representation in Eqs. (1)–(2),
we can straightforwardly show that the aggregate process,XN,t , has

1 Assumption 1 can be relaxed to allow for long-memory effects. This point is
further discussed in Section 5.
2 The contribution of idiosyncratic shocks through network effects or nongranu-

larity has been discussed in recent papers (e.g., Gabaix, 2011 and Acemoglu et al.,
2012).
3 Our results extend to the case of (time-varying) stochastic weights. Such an

extension requires at least that the weights be distributed independently from the
stochastic process defining the random variable.

the following dynamics4:

XN,t =

∞
k=0


N
i=1

wiρ
k
i κi


ϵt−k +

∞
k=0


N
i=1

wiρ
k
i ηi,t−k


. (3)

When N becomes large, by virtue of the strong law of large mo-
ments, the limit aggregate dynamics is obtained.

Proposition 1. Suppose that Assumptions 1–3 hold. Given the disag-
gregate model defined in Eqs. (1)–(2), the limit aggregate process as
N → ∞ has the following dynamics:

Xt =

∞
s=0

γs ϵt−s (MA form), (4)

Xt =

∞
s=1

Cs Xt−s + ϵt (AR form), (5)

where XN,t
L2
→ Xt and ẼN (ρs)

a.s.
→ Ẽ (ρs) as N → ∞. Parameters γs

are defined as γs = Ẽ(ρs), with


∞

s=0 |γs| < ∞. Parameters Cs are
defined by C0 = 1, Cs = Ẽ(cs), ∀s ≥ 1 with c1 = ρ and cs+1 =

(cs − Cs) ρ , with


∞

s=0 |Cs| < ∞.

Proof. Gonçalves and Gouriéroux (1988) and Lewbel (1994). See
Appendix A.

The absence of an idiosyncratic component in Eqs. (4) and (5) is
a direct consequence of Assumptions 1–3. Eq. (4) shows that the
impulse-response coefficients γs are the noncentral moments of
the random parameter ρ.5 Eq. (5) shows that aggregation leads
to an infinite autoregressive model for Xt (see Robinson, 1978
and Lewbel, 1994). The autoregressive parameters Cs are nonlinear
transformations of the noncentralmoments ofρ and satisfy the fol-
lowing nonhomogeneous difference equations (for s ≥ 1), which
turn out to be useful in the estimation with only macro data:

Cs+1 = Ẽ(cs+1) = Ẽ

ρs+1

−

s
r=1

Cr Ẽ

ρs−r+1 , (6)

and


∞

s=1 Cs =


∞

s=1 Ẽ(ρs)/(1 +


∞

s=1 Ẽ(ρs)) < 1 almost surely.
In addition, the long-run multiplier is given by 1/(1−


∞

s=1 Cs) =
∞

s=0 Ẽ(ρs). With the exception of a degenerate distribution for ρ
(Dirac distribution), the aggregate dynamics is richer than the indi-
vidual dynamics because of the nonergodicity of the randomAR(1)
process. Conversely, when parameters Cs are known or estimated,
the cross-sectional moments can be easily deduced. For instance,
the cross-sectional mean and variance are Ẽ(ρ) = C1 and Ṽ (ρ) =

C2, respectively, and the standardized skewness and kurtosis are
S̃(ρ) = (C3 − C1C2) / (C2)

3/2 and K̃(ρ) = (C4 − 2C1C3 + C2
1C2 +

C2
2 )/ (C2)

2, respectively.

4. Estimation

The estimation approach that was originally proposed by
Lewbel (1994) consists in truncating the infinite sums in Propo-
sition 1 and estimating the resulting dynamics:

XN,t =

K
s=1

Cs XN,t−s + VN,t , (7)

4 Put differently, it is an ARMA(N,N − 1) in the absence of common roots in the
individual processes (Granger and Morris, 1976).
5 Noncentral moments γs = Ẽ(ρs) of any (nondegenerate) random variable ρ,

defined on [0, 1), satisfy: 1 > γ1 ≥ · · · ≥ γs ≥ 0, ∀s ≥ 1, and γs → 0 as s → ∞.
See Appendix B for additional properties of noncentral moments.
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