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• Wemodel investment decisions with a fixed adjustment cost not proportional to existing capital.
• The optimal policy is of the generalized (S, s) form.
• In agreement with the empirical evidence, as the firm size increases, investment becomes less lumpy.
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a b s t r a c t

We develop and characterize analytically an investment model in discrete time with a fixed adjustment
cost not proportional to existing capital and complete irreversibility that reproduces the lumpiness
of investment at the micro-level. In agreement with the empirical evidence, as a firm size increases,
investment becomes less lumpy. The optimal policy is of the generalized (S, s) form.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Investment is lumpy at the plant level with long periods of
inactivity punctuated by infrequent and large adjustments. And,
smaller plants have lumpier investment patterns: both the proba-
bility of a spike and the share of total investment represented by
spikes are decreasing in establishment size.1

We consider a model of lumpy investment that has received
a lot of attention in both applied and theoretical works.2 Existing

E-mail address: nroys@ssc.wisc.edu.
1 These findings have been reported in a number of datasets for the US (Doms

and Dunne, 1998), Latin America (Gelos and Isgut, 2001), Europe (Nilsen and
Schiantarelli, 2003; Nilsen et al., 2007; Bachmann and Bayer, 2014), Africa and Asia
(Bond et al., 2007).
2 See Abel and Eberly (1994), Dixit and Pindyck (1994), Caballero and Engel

(1999), Khan and Thomas (2008), Stokey (2008), Bachmann et al. (2013), and
Bachmann and Bayer (2014). Fixed adjustment costs are recognized to be important

theoretical models cannot account for size-dependent lumpiness.
Fixed investment costs are proportional to the existing capital
stock in Caballero and Leahy (1996), proportional to current
profitability in Abel and Eberly (1998) and proportional to current
output in Caballero and Engel (1999). Such fixed costs do not
become irrelevant as the firm grows but imply that the firm size
does not matter for investment dynamics.

We extend this theoretical literature by considering a fixed ad-
justment cost not proportional to the existing capital.3 We pro-
vide a characterization of the optimal policy and the value function
under general assumptions on uncertainty and technology. The

in many other settings such as entry into the labor market (Cogan, 1981), labor
demand (Cooper et al., 2004) or durable goods consumption (Grossman and
Laroque, 1990).
3 Recent quantitative work has used a similar specification but rely on numerical

methods to characterize the solution. See Khan and Thomas (2008), Bachmann et al.
(2013), Elsby and Michaels (2014) and Bachmann and Bayer (2014).
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main difficulty created by the fixed cost is that the value function
is no longer concave and hence standard arguments (see Stokey
et al., 1989) need to be extended. Our contribution is threefold.
First, we show that the concept of k-concavity introduced by Scarf
(1960) can be applied to an investment model to derive the opti-
mal policy which is of the generalized (S, s) form.4 Other existing
proofs of the optimality of (S, s) policies in investment models use
a continuous-time setting.5 Yet, discrete time allows us to char-
acterize the optimal policy in a rigorous and parsimonious way
whereas continuous-time models can be impeded by measure-
theoretic issues. In addition, discrete-time models are familiar to a
broader audience since they are the basis of most modernmacroe-
conomics and empirical work. Second, we show that the closeness
of the space of k-concave functions follows almost directly from
the property that k-concavity is preserved after maximization of a
k-concave function minus a fixed cost k. Last, a substantive contri-
bution is to show that under plausibly calibrated values the model
delivers more lumpiness for smaller plants, a robust feature of
plant-level data, while in existing theoretical models lumpiness is
not systematically related to the plant size.

An important restriction we impose throughout the paper is
complete irreversibility. Relaxing this assumption creates techni-
cal difficulties: the optimal policy is no longer guaranteed to be of
the (S, s) form and the value function is not k-concave.

The rest of the paper is organized as follows. Section 2 presents
the model. Section 3 derives the optimal decision rule and its
properties. Section 4 presents the implications of themodel for the
lumpiness of investment by firm size. Section 5 concludes.

2. The model

2.1. Assumptions

Time t is discrete and indexed by t . At each period, the plant’s
manager decides to invest or not (it ≥ 0) over an infinite time
horizon. She is risk-neutral and discounts future profits at a con-
stant rate β ∈ (0, 1). Her decision depends on the level of capital
inherited from the previous period kt ∈ K and the plant’s prof-
itability At ∈ A. The level of capital at the start of the next period,
t + 1, is: kt+1 = (1 − δ)kt + it where δ is a positive depreciation
rate. The one-period profit function is:

π(A, k, i) = R(A, k) − C(i) (2.1)

R(A, k) represents reduced-form revenue and incorporates the
optimal choice of flexible factors. C(i) is the adjustment cost
function. Profitability A follows an exogenous and stationary
Markov process. New values of profitability are drawn from a
Markov transition function Z : A× A −→ [0, 1] where (A,A) is a
measurable space. A is a Borel set in R+, with its Borel subsets A.

Assumption 1. A and K ≡

0, k̄


are compact sets in R+ with

k̄ < ∞.

Assumption 2. Z has the Feller property.

Assumption 3. (i) R is continuous on A × K and (ii) R(A, ·) is
concave for each A ∈ A.

4 Our setting differs from Scarf (1960) for several reasons. Notably, we model
investment decisions of a profit maximizing firm, the horizon is infinite and
profitability follows a Markov process.
5 See Dixit and Pindyck (1994) and Stokey (2008) for reviews of continuous-time

methods and applications.

We consider the following specification for adjustment cost.

C(i) =

F + pi if i > 0
0 if i = 0
∞ if i < 0

(2.2)

where F and p represent, respectively, fixed and linear adjustment
costs. The fixed cost creates a discontinuity in C(·) at 0: C(0) = 0
while limi→0+ C(i) = F > 0.

Fixed investment costs are proportional to the existing capi-
tal stock Fk in Caballero and Leahy (1996), proportional to current
profitability FA in Abel and Eberly (1998) and proportional to cur-
rent output FR(A, k) in Caballero and Engel (1999). Our formulation
leads to more lumpiness for smaller plants as shown in Section 4.

2.2. The dynamic programming problem

Given the law of motion of capital kt+1 = (1 − δ)kt + it , it ≥ 0
and the current state (At , kt), a manager chooses the sequence
of investment {ij}∞j=t to maximize the present discounted value of
current and future profits:

V ∗(At , kt) = sup
{ij}∞j=t

E


∞
j=t

β j−tπ(Aj, kj, ij)|kt , At


(2.3)

where V ⋆ is the supremum function. The value function V (A, k) is
given by a solution to Bellman’s equation:

V (A, k) = R(A, k)

+ sup
k(1−δ)≤k′≤k̄


−C(k′

− k(1 − δ)) + β


A

V (A′, k′)Z(dA′, A)


.

(2.4)

The results from Stokey et al. (1989) relating the sequence problem
in Eq. (2.3) to the functional equation (2.4) apply and we can focus
on the Bellman equation and its solution.6 The following sets are
defined under the usual sup-norm ∥·∥. LetB be the set of bounded
functions V : A × K −→ R. Let C be the set of bounded and
continuous functions V : A × K −→ R. Let T be the Bellman
operator in Eq. (2.4) with V = T (V ). Next proposition shows that
the value function is continuous despite the discontinuity in the
one-period profit function.

Proposition 4. Under Assumptions 1–3, V ∗ is jointly continuous in
(A, k).

Proof. Applying Theorem 4.6 in Stokey et al. (1989) to bounded
functions gives that V ∗ is the unique function in B that satisfies
the Bellman Eq. (2.4). The value function can be re-written as:

V (A, k) = R(A, k)

+ max


sup

k(1−δ)≤k′≤k̄


β


A

V (A′, k′)Z(dA′, A)

− p(k′
− k(1 − δ)) − F


, β


A

V

A′, k(1 − δ)


Z(dA′, A)


.

6 Theorems 9.2 and 9.4 in Section 9.1 of Stokey et al. (1989) hold under
the assumptions that (a) π is bounded above and (b) the correspondence
k′

∈ K : k′
≥ k(1 − δ)


is non-empty valued and has a measurable selection and

its graph is measurable. It is immediate that under Assumptions 1–3 both (a) and
(b) are satisfied.
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