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HIGHLIGHTS

e We introduce a nonparametric approach to solving nonlinear stochastic dynamic models.
e The distinct advantage of this approach is that there are no restrictions placed on the unknown conditional expectations function.
e This approach is shown to be stable and accurate when applied to a simple one-sector stochastic growth model.
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In this paper we present a nonparametric approach to solving a simple one-sector stochastic growth
model. A distinct advantage of our approach is that it does not require placing restrictions on the generally
unknown conditional expectations functions. Our method is shown to be accurate and computationally
stable when compared to the standard Parameterized Expectations Approach (PEA) and the traditional
linear approximation. We demonstrate this using a simple stochastic general equilibrium model with a
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1. Introduction

In this paper we introduce a nonparametric method for com-
puting equilibria in nonlinear stochastic dynamic models. The dis-
tinct advantage to this approach is that there are no restrictions
placed on the functional form of the underlying conditional ex-
pectations function to be estimated. We show that the method
performs very well against both the traditional Parameterized Ex-
pectations Approach (PEA) introduced by Marcet (1988) and the
traditional linear approximation.

2. A general framework

Following Maliar and Maliar (2003) we characterize the econ-
omy by a vector of n variables, z;, and s exogenously determined
shocks, u;. Furthermore, let x; be a subset of (z;_1, u;) and let the
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process {z;, u;} be represented by the following system:

g(Eclp(zi11,20)), 20, 21, ur) = 0 forallt (1)

where g: R™ x R" x R" x R® — R9 and ¢: R*" — R™. The condi-
tional expectations function E[¢ (z;+1, z¢) |x:] = @ (x;) is generally
unknown and thus the solution to the system is generally un-
known. One approach to solving this problem is to use the method
of Marcet (1988) which is known as the parameterized expec-
tations approach (PEA). The basic idea behind the method is to
approximate the conditional expectations functions by imposing
parametric assumptions on the conditional expectations functions.
This approach is viable because by definition the conditional ex-
pectations function will solely be a function of the conditioning set
of variables. In theory, this means that one can select a function that
can approximate the unknown functions with an arbitrary level
of accuracy. The distinct advantage to using projection methods,
such as the PEA, is that it is easy to implement in practice. Fur-
thermore, they can be much faster than more accurate measures
such as value function iteration or methods that rely upon numer-
ical integration, especially when the dimension of the state space is
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large. In addition to this, projection methods do not suffer from the
curse of dimensionality in the same way as value function iteration.
This same advantage will be true for the nonparametric approach
we lay out in this paper. The disadvantage of the PEA is that it can
exhibit implosive or explosive behavior. This is a problem specifi-
cally addressed by Maliar and Maliar (2003) where they show that
by placing moving bounds on the endogenous state variables, one
can overcome the implosive or explosive behavior of the PEA algo-
rithm. The basic idea of PEA can be summarized as follows:

B = arﬂglzluiﬂ ¥ (B, %) — D)l (2)

where the PEA seeks to find a vector of parameters that minimize
the distance between the actual expectations function and a fixed
approximate. One problem with this approach, as with any para-
metric approach, is that the approximating function can be mis-
specified resulting in an inaccurate solution. In practice, one could
just increase the order of approximation however this approach
can be costly computationally as the order of expansion increases
to reduce the degree of model misspecification. Furthermore as
shown by Judd et al. (2011) higher order approximations lead to an
ill-posed inverse problem when using standard parametric meth-
ods to estimate the conditional expectations. They address the
stability problem by offering a wide variety of parametric approxi-
mation methods, including regularization methods, which greatly
increase the accuracy and stability of the parameterized expecta-
tions approach.

Our approach differs from the traditional PEA in that we avoid
function selection and the ill-posed problem directly. Using a
nonparametric approach, we focus on estimating the conditional
expectations function directly using the joint and marginal distri-
butions of the variables given by the following expression':

E[$(zesr, 0] = / P 2 zeX) 0 (g
f(xt)

In theory, the conditional expectations operator is the best predic-
tor in the mean squared error sense. Thus there exists no other
function that predicts ¢ better than Eq. (3). Only under certain
assumptions will a given parametric function coincide with the
conditional expectations function. In practice, one can estimate
this conditional expectations function nonparametrically using the
generalized product kernel as presented in Li and Racine (2003):

E[¢p(zs1, 20) 1% = X] = 1(x)
3 X5

Z‘i’tljlhl (?h, ft)n)vl(x”#xd)n}\ -

1

= (4)
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where x¢ are continuous state variables, x? are discrete state vari-
ables, and x° are discrete variables with a natural ordering. Given
the general form for our product kernel, the nonparametric ap-
proach can handle any type of state variable whether they be con-
tinuous or discrete. We select the bandwidth parameter using the

_1
rule-of-thumb: h = ¢[[]:, ]1/ 'T™ %" where c € R* and o; is
the standard deviation of x;. Other choices for bandwidth selection

1 A similar approach has been developed by Jirnyi and Lepetyuk (2011) but their
focus is particularly on solving for the dynamics of heterogeneous agent models
with aggregate uncertainty. Their approach also relies on an alternative to the
kernel methods presented in this paper where they use a K-nearest neighborhood
approach instead of the local constant approach presented in this paper.

are cross-validation or modified Akaike information criterion (AIC)
procedures.? We use the following update method for the choice of
bandwidth #+! = (1—w)I. ot whwhere his the j+ 1 bandwidth
calculated via ROT with @ € (0, 1]. This is similar to the homotopy
approach followed by Marcet (1988).

3. Implementation

To implement the nonparametric expectations approach (NPEA)
in practice we must start off with an initial guess for the conditional
expectations function. Given this we can calculate the sequence of
variables z;. Then we update the estimate for the conditional ex-
pectations function and iterate until convergence.

e Step one. Given a sequence of {u[}Ll and initial guess At
calculate {z, (}b[}f:].

e Step two. Given the sequence of endogenous and exogenous
state variables generated above update the conditional expec-
tations functions to m'*1,

e Step three. Check for convergence of the conditional expecta-
tions function such that D(#/, m*!) < ¢ for some distance
function D.

To initialize the algorithm we use a parametric function with an
uninformative prior so that our starting function is given by ¢ (8 =
0; x,). This assumption allows the researcher to remain agnostic
about the underlying function to be estimated. As shown later this
initialization does not affect the convergence of the nonparametric
method.

4. An example

We follow the example as laid out by Maliar and Maliar (2003)
and Duffy and McNelis (2001) where they consider a simple one-
sector stochastic growth model. The basic setup is as follows:

max EOZSt ,

{ce ke Y2

st.c+ ke =1 —dki_1+ 6k, (5)

d )
where 6; = 6/ | exp(u;) and u; ~N(0, 0?) From the first order
conditions we obtain the classic Euler equation presented as:

1-— d + 9t+1ak?7]

v
Cet1

o7 = 55[ b, kH]. 6)

Just by the nature of the conditional expectation function, Eq. (6)
will only be a function of the conditioning set. In general, the
solution to Eq. (6) cannot be found analytically. However when
y = land d = 1 we can show that ¢; = (1 — «ad)6,k{’_,. Using
the PEA we might try to approximate the unknown conditional
expectations with the following approximate:

V(B b, ke—1) = exp(Bo + B110g(6;) + B2 log(ke—1)

+ B3 (log(k—1))* + Ba(log(6,))*

+ Bs log(ke—1) log(6y)). (7)
Once the functional form is chosen and the parameter vector Bi~1is
initialized, then a sequence of k;(8") = ¥ (B~ ke_1(B), 6;)

and ¢,(B7") = (1 — dke—1 + Ok* 1Iq(ﬂ‘ 1y is generated for
an exogenous sequence of 6;. Once this is done, the researcher

2 For a detailed treatment of these methods see Racine and Li (2007).
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