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h i g h l i g h t s

• Presents a modified Kalman filter where the vector of observables can depend on lagged states.
• The modified filter does not require increasing the state dimension.
• The modified filter can be used together with the Kalman simulation smoother.
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a b s t r a c t

This note describes how the Kalman filter and the Kalman smoother can be modified to allow for the
vector of observables to be a function of lagged state variables without increasing the dimension of the
state vector in the filter.
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This note describes how the Kalman filter can be modified to
allow for the vector of observable variables in the measurement
equation to be a function of lagged latent variables. The standard
approach, which is to augment the state vector of the filter to
include also lagged variables, works well in most applications.
However, it also doubles the dimension of the state vector which
is undesirable in some applications. The modified filter presented
here avoids increasing the dimension of the state by exploiting that
the innovation representation can be modified so as to make it
unnecessary to augment the state vector with lagged variables.

In a related paper, Qian (2014) shows how the Kalman filter can
be modified to allow for the current state and observation vectors
to depend on both lagged observation and state vectors. The main
difference between that paper and the present is thus that here
the current observation vector may only depend on lagged latent
states, rather than on lagged variables that are directly observable.
This results in somewhat simpler derivations.

E-mail address: pkn8@cornell.edu.
URL: http://www.kris-nimark.net.

The derivation of the modified filter, which nests the standard
filter as a special case, is presented in the next section. This is
followed by a brief description of how to use the modified filter
together with standard algorithms for the Kalman Smoother and
Kalman Simulation Smoother. The last section concludes and ref-
erences existing work where the modified filter has proved to be
useful.

1. A filtering problem

Consider a standard state space system augmented to allow the
measurement equation to depend on lagged states

Xt = AXt−1 + Cut : ut ∼ N(0, I) (1.1)
Zt = D1Xt + D2Xt−1 + Rut (1.2)

where Xt is the n×1 dimensional state vector, A is an n×nmatrix,
C is and n × m matrix. Zt is a p × 1 vector of observable variables
and D1 and D2 are both p × nmatrices and R is a p × m matrix.

Define the notation

Xt|t−s ≡ E

Xt | Z t−s, X0|0


(1.3)
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Pt|t−s ≡ E


Xt − Xt|t−s
 

Xt − Xt|t−s
′


(1.4)

where X0|0 is the mean of the exogenously prior distribution of X0
given by

X0 ∼ N

X0|0, P0|0


. (1.5)

We want to find the Kalman gain Kt in the recursive updating
equation

Xt|t = AXt−1|t−1 + Kt

Zt − (D1A + D2) Xt−1|t−1


(1.6)

so that Xt|t is the conditional minimum variance estimate of Xt .

1.1. The standard approach

The state space system (1.1)–(1.2) is standard apart from the
fact that the vector of observables Zt depends on both the current
and the lagged state. A straightforward and common way to get
around this problem is to redefine the state so as to include also
lagged Xt to get

X t = AX t−1 + Cut (1.7)

Zt = DX t + Rut (1.8)

where

X t =

X ′

t X ′

t−1

′
, A =


A 0
I 0


C =


C
0


, D =


D1 D2


.

The standard filter can then be applied to the augmented system
(1.7)–(1.8). In most application, this does not cause any complica-
tions. However, in some cases it is desirable to have a state of low
dimensionality and redefining the state as above doubles the di-
mension of the state, i.e. X t is a 2n × 1 vector. Below, a new filter
is derived that solves the filtering problem while maintaining an
n-dimensional state vector.

2. A modified filter

In this section, themodified filter is derived. The system is linear
with Gaussian disturbances and theminimumvariance estimate of
the latent state then coincides with the orthogonal projection onto
the set of conditioning variables (or signals). The filter is derived
using the Gram–Schmidt approach of recursively orthogonalizing
the time series of observable variables.1 This approach exploits
that the projection of a random variable onto a set of mutually
orthogonal signals is equivalent to adding up the projections of the
variable onto the individual signals. That is,

E(x | z, y) = E(x | z) + E(x | y) (2.1)

if

E(zy′) = 0 (2.2)

and x, y and z are zero-mean Gaussian random variables.
It is the property (2.1)–(2.2) that will allow us to write down

a recursive update equation for Xt|t . The first step is to find the
projection of Xt onto the component of the period t signals that
is orthogonal to information known in period t−1. This projection
can then be added to the prior estimate Xt|t−1, i.e. the projection of

1 A derivation of the standard filter along similar lines can be found in Anderson
and Moore (1979).

Xt onto period t − 1 information, to form a posterior estimate Xt|t .
To this end, define the innovationZt as the component of Zt that is
orthogonal to period t − 1 information

Zt ≡ Zt − Zt|t−1 (2.3)

so that the posterior estimate Xt|t will be given by

Xt|t = Xt|t−1 + E

Xt | Zt . (2.4)

To solve the filtering problem we thus need to find an expression
for E


Xt | Zt. We will start by solving this problem for period 1.

The resulting expressions are then straightforward to generalize
to period t .

2.1. Projecting the state onto the innovation in the observable vector

In the initial period there are two pieces of information
available: the exogenously given prior distribution (1.5) and the
initial signal Z1. By (2.4) the prior and the signal can be combined as

X1|1 = X1|0 + K1Z1 (2.5)

to form the posteriormean X1|1 if K1Z1 = E

X1 | Z1. From the pro-

jection theorem (e.g. Brockwell and Davis, 2006), the appropriate
K1 is given by the standard projection formula

K1 = E

X1Z ′

1

 
E

Z1Z ′

1

−1
. (2.6)

To compute the Kalman gain K1 we thus need to derive operational
expressions for E


X1Z ′

1


and E

Z1Z ′

1


.

2.2. The covariance of the state and the innovation vector

To find the covariance E

X1Z ′

1


, start by using the identities

implied by (1.1)–(1.2) to rewrite the innovation as

Zt = (D1A + D2)

X0 − X0|0


+ (D1C + R) u1. (2.7)

It is helpful to define the posterior state estimation errorXt asXt ≡ Xt − Xt|t (2.8)

and use this together with (2.7) to express the covariance of the
state and the innovation as

E

X1Z ′

1


= E


A

X0 + X0|0

+ Cu1


×


(D1A + D2)X0 + D1Cu1 + Ru1

′

. (2.9)

Since E

X0|0X ′

0


= 0 and P0|0 ≡ E

X0X ′

0


Eq. (2.9) can be simplified

to

E

X1Z ′

1


= AP0|0 (D1A + D2)

′
+ CC ′D′

1 + CR′. (2.10)

We thus have the first term in the Kalman gain (2.6).

2.3. The covariance of the innovation vector

To find the covariance of the innovation vectorZ1, simply use
that (2.7) implies that

E
Z1Z ′

1


= (D1A + D2) P0|0 (D1A + D2)

′

+ (D1C + R) (D1C + R)′ (2.11)

yielding the second term in the Kalman gain (2.6).
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