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h i g h l i g h t s

• We derive the LM test statistic for random effects in a panel probit model.
• We obtain a reparameterization of the statistic that produces a feasible calculation.
• We show that the statistic can be computed using generalized residuals.
• We demonstrate that the results generalize to other models.
• The test is employed in a substantive application.
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a b s t r a c t

We obtain an LM test for the random effects probit model. In the natural parameterization of the model
the necessary derivatives are identically zero under the null hypothesis. After a reparameterization, the
feasible LM test is based on generalized residuals.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Empirical analyses involving limited dependent variables and
random individual effects in panel data sets have become quite
common. By far the leading application of the random effects
(RE) model after the linear regression is the binary probit model.
The estimated coefficients from RE and pooled probit models
are different because of the different normalizations implied by
the models. As Arulampalam (1999) discusses, in the presence
of random effects, an adjustment of the estimated partial effects
is needed to remove an ambiguity in the interpretation of the
estimates.
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Our interest is in the Lagrange Multiplier (LM) test for random
effects in the probit model. The LM test has provided a standard
means of testing parametric restrictions for a variety of settings. Its
primary advantage among the trinity of tests (LM, Likelihood Ratio
(LR), Wald) is that it is based on the null, restrictedmodel, which is
usually simpler to estimate than the alternative, unrestricted one.
Breusch and Pagan’s (1980) LM test for random effects in a linear
model that is based on pooledOLS residuals is the leading example.

Testing for random effects in the probit model is an example of
a problem that emergeswhen the parametric restriction in the null
hypothesis puts the value of a variance parameter on the boundary
of the parameter space. The restriction is that the standard
deviation of the random effect equals zero.When RE probit models
are estimated, popular computer packages automatically produce
LR and Wald-type tests of the null hypothesis of no random
effects, but would appear to use the χ2

(1) (or standard normal)
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distribution to compute the p-values for these tests. If, under the
null hypothesis, the parameter being tested lies on the boundary of
the parameter space, an additional advantage of the LM test is that
it will still have standard distributional properties, whereas the LR
and Wald tests will not (see Andrews, 2001). In fact, in testing for
random effects in the probit model, the LR and Wald tests will be
distributed as a (1/2)χ2

(1) distribution under the null hypothesis
(see Gourieroux et al., 1987). This means the correct critical values
for these two tests at the 5% and 10% significance level are 5.02 and
3.84 respectively, rather than the commonly used values of 3.84
and 2.71 from the χ2

(1) distribution.
The RE probit model is, after the linear regression model, by

far the leading application of the more general class of random
effects models. Despite the obvious simplicity of the restricted
model, the LM test for this model does not appear in the existing
literature. One reason for this is that the usual parameterization
of the model has the inconvenient feature that the score vector
is identically zero at the restricted ML estimates. The received
literature (e.g., Chesher, 1984, Lee and Chesher, 1986 and Kiefer,
1982) identifies a handful of specific cases in which the score
vector needed to compute the LM statistic is identically zero at the
restricted estimates, which would seem to preclude using the LM
test. We find that the RE probit model represents an entire class of
such models.

Lee and Chesher (1986) discuss a general theory of how to deal
with score vectors that are zero under the null hypothesis. Despite
what would seem to be its broad application, we have not found
any applications in the subsequent 30 years of literature. We will
provide a useful expression for the LM test statistic and illustrate
its use with an empirical application on hospitalization behavior.

2. The random effects probit model

The random effects probit model is

y∗

it = β′xit + σuui + εit; i = 1, . . . , n; t = 1, . . . , Ti,
yit = 1[y∗

it > 0],

εit ∼ N[0, 12
], ui ∼ N[0, 12

],

E[εitεjs] = 0, i ≠ j, t ≠ s;
E[uiuj] = 0, i ≠ j, E[εitus] = 0 ∀i, t, s,

(1)

where β and xit are K × 1 vectors. (The analysis to follow is not
dependent on normality for ui, though that is the natural case
to consider.) The log likelihood for a sample of n observations,
conditioned on the unobserved heterogeneity, u1, u2, . . . , un, is

log L(β, σu|u1, . . . , un) =

n
i=1

log
Ti

t=1

Φ[qit(β′xit + σuui)], (2)

where Φ(t) is the standard normal CDF and qit = 2yit − 1. ML
estimation is based on the unconditional log likelihood given by

log L(β, σu)

=

n
i=1

log


∞

−∞


Ti

t=1

Φ[qit(β′xit + σuui)]


φ (ui) dui

=

n
i=1

log Li(β, σu), (3)

where φ(t) is the standard normal PDF. Butler andMoffitt’s (1982)
estimation method based on Hermite quadrature is generally used
in contemporary applications.

2.1. LM test for random effects

To form the LM statistic for the test of the null hypothesis of no
random effects, σu = 0, we require ∂ log Li(β, σu)/∂σu;

∂ log Li(β, σu)

∂σu

=


∞

−∞


Ti

t=1
Φ[qit ait ]


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
∞

−∞
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Ti
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, (4)

where ait = β′xit + σuui. In order to compute the LM statistic, we
need to evaluate this expression at σu = 0. Moving all terms not
involving ui outside the integrals produces

∂ log Li(β, 0)
∂σu

=


Ti
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∞
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. (5)

The integrals in the numerator and denominator are E[ui] = 0
and 1, respectively. Regardless of the value of β′xit , each term
in ∂ log L(β, σu)/∂σu is identically zero when σu equals zero. The
terms in ∂ log Li(β, σu)/∂β are also zero. The score vector under the
null hypothesis is identically zero. The result (and the derivation
to follow) will extend generally to other single index models with
random effects. (Surprisingly, it also holds for the linear regression
model for which Breusch and Pagan’s LM test has been used since
1980. See Chesher, 1984.)

2.2. LM test based on a reparameterization

Chesher (1984), Lee and Chesher (1986) and Cox and Hinkley
(1974) suggested reparameterization of themodel as a strategy for
obtaining the LM test. We use γ = σ 2

u . The log likelihood becomes

log L(β, γ )
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Then,

∂ log Li(β, γ )
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where bit = β′xit + ui
√

γ , φit = φ(qitbit), Φit = Φ(qitbit) and
git = qitφit/Φit . Note that gitui is ∂ logΦit/∂(

√
γ ). Evaluated at

γ = 0, the numerator now takes the form 0/0. We use L’Hôpital’s
rule, taking the limits as γ approaches zero from above. Then,
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