
Economics Letters 123 (2014) 216–219

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

Some exact and inexact linear rational expectation models in vector
autoregressive models
Anders Rygh Swensen ∗

University of Oslo, Department of Mathematics, Norway
Statistics Norway, Research Department, Norway

h i g h l i g h t s

• Compare exact and inexact linear rational expectation models.
• Characterize the difference.
• Discuss possible elimination to avoid constrained optimization for maximizing likelihood.

a r t i c l e i n f o

Article history:
Received 4 December 2013
Received in revised form
4 February 2014
Accepted 17 February 2014
Available online 22 February 2014

JEL classification:
C32
C61

Keywords:
Vector autoregressive models
Exact rational expectations
Inexact rational expectations
Maximum likelihood estimation

a b s t r a c t

In this paperwe considermaximum likelihood estimation in some exact and inexact linear rational expec-
tation (LRE) models. The implications of the two models on the coefficients of the vector autoregressive
(VAR) model are spelled out. The inexact version is more complicated and possible simplification of the
resulting constrained optimization problem is discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Anticipations about future developments are an important as-
pect of economic behavior. As one may expect there have there-
fore been many attempts to incorporate expectations in economic
theories. One way to obtain this, when the models contain a
stochastic element, is to identify the expectations which are to
be modeled with the mathematical conditional expectations given
observations up to and including the present ones. This is a com-
monly used approach which allows economic theories to be for-
mulated taking forward looking behavior into account. Vector
autoregressive models (VAR) are one of the work horses of em-
pirical macroeconomics. When the stochastic model is formulated
as a VAR, the expectations are one-step ahead and the behavioral
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restrictions are linear; this will have implications for the coeffi-
cients of the VAR.

It turns out that two distinct cases arise. One is the case where
the restrictions are exact in the sense that the conditional expecta-
tions are completely specified in terms of the other variables, and
this will naturally be denoted as the exact case. The requirement
that the specified relationsmust hold exactly is inmany cases rigid.
A natural alternative is to allow for a certain discrepancy described
by a random variable. This is the inexact case. For a discussion of
the two cases one can consult Hansen and Sargent (1991).

In a VAR-model it is reasonable to suppose that the random
variables capturing the discrepancy are innovations even if more
elaborate specifications can be and often are used. An advantage
of the innovation assumption is that the restrictions on the
coefficients of the VAR-model can be worked out similarly to the
exact case. It is then possible to compare the two specifications.
This is interesting since in many cases it is relatively easy to
estimate the exact version. For fixed values of the structural
parameters it can be done by running some appropriately
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specified regressions; see e.g. Lütkepohl (1991, Section 10.2.3),
for the case where the impact matrix has full rank so the
process is I(0) and Johansen and Swensen (1999, 2004, 2008)
for reduced rank VAR-models. This provides the value of the
Gaussian likelihood, conditioned on the initial observations, as a
function of the structural parameters, i.e. a concentrated or profile
likelihood. Estimates for the structural parameters can then be
found by a numerical optimization routine. On the other hand,
using maximum likelihood techniques for estimating the inexact
specification can be much more computationally demanding.
Typically it will involve maximizing over large sets of structural
parameters and parameters from the VAR satisfying non linear
constraints.

In the present paper we shall compare the restrictions on the
VAR coefficients for the two situations. In particular we shall gen-
eralize a result of Kurman (2007) showing that non-singularity of
the companion matrix is a sufficient condition for an exact model.
We also consider in more detail a situation where the maximiz-
ing of the likelihood for inexact models, which in general involves
maximization under side conditions, can be reduced to maximiza-
tion without side conditions.

The paper is organized as follows. In Section 2 the VAR-
framework is described, and the LRE models formulated and com-
pared. In Section 3 the possibility of reducing the constrained
optimization problem to an unconstrained one is discussed.

The following notationwill be used: a vector having the j’th ele-
ment equal to one and the rest equal to zero will be denoted by ej.

2. General model

Thepoint of departure is p-dimensional observationsX1, . . . , XT
from a vector autoregressive (VAR) model of order kwritten as

Xt = A1Xt−1 + · · · + AkXt−k + µt + ϵt , (1)

where ε1, . . . , εT are independent Gaussian variables with expec-
tation zero, unrestricted covariance matrix Ω and µt is a non-
random sequence. Let the vector µ contain any parameter de-
scribing µt . Considering the k first observations as fixed the con-
centrated conditional log likelihood for the parameters Al =

{aij,l}
p
i,j=1, l = 1, . . . , k and µ can be expressed as

l(A1, . . . , Ak, µ) = −
p(T − k)

2
log(2π)

−
(T − k)

2
{log[det(Ω̂)] + p},

where Ω̂ =
T

t=k+1 ϵ̂t ϵ̂
′
t/(T − k) and ϵ̂t = ϵ̂t(A1, . . . , Ak, µ) is de-

fined as solutions of (1). Finding themaximum likelihood estimates
of A1, . . . , Ak, µ can therefore be done byminimizing log[det(Ω̂)].
We will consider this problem, where in addition the parameters
satisfy a set of restrictions that will be specified below.

The LRE hypotheseswe shall study can be described by relations
involving k+1p×q-dimensionalmatrices, c1, c0, . . . , c−k+1 and a q
dimensional vector c where thematrices d = −c1−c0−· · ·−c−k+1
and c1 have rank q. Some of the entries may involve unknown
structural or semi-structural parameters. The hypotheses take the
following form where Et denotes the conditional expectations
given the observations up to time t , Xk+1, . . . , Xt :

c ′

1Et [Xt+1] + c ′

0Xt + c ′

−1Xt−1 + · · · + c ′

−k+1Xt−k+1 + c = ut . (2)

The error terms ut are a sequence of innovations in the VARmodel,
i.e. Et [ut+1] = 0.

If all ut = 0 the LRE model is exact. The case where the innova-
tion terms are non-zero, i.e. Et [u2

t ] > 0, is denoted as the inexact
LRE model.

Example 1. (a) The New-Keynesian Phillips Curve, (NKPC) model
has the following form in the exact case

πt = γf Et [πt+1] + γbπt−1 + λst ,

where πt denotes log inflation and st is a proxy for the
logarithm of marginal cost. With Xt = (πt , st , Z ′

t )
′, where the

p − 2 dimensional vector Zt contains other relevant variables,
this is exactly the case treated by Kurman (2007). Now c1 =

(γf , 0, . . . , 0)′, c0 = (−1, λ, 0, . . . , 0)′, c−1 = (γb, 0, . . . , 0)′
and c = 0.

(b) For the particular choice γf = δ, γb = 0 and λ = 1 one gets a
present value model. For 0 < δ < 1 the stable solution is πt =

∞

i=0 δiEt [st+i]. The case thatπt =


∞

i=1 δiEt [st+i] corresponds
to πt = δEt [πt+1 + st+1], where now c1 = (δ, δ, 0, . . . , 0)′,
c0 = (−1, 0, 0, . . . , 0)′.

(c) Alternative inflation model. Sbrdone (2002) considered a bivari-
ate model of the form ∆pt = δEt [∆pt+1] − α1(pt − ulct + κ),
where pt and ulct are the logarithm of price and unit labor
cost, respectively. Then Xt = (pt , ulct)′, c1 = (δ, 0)′, c0 =

(−1 − δ − α1, α1)
′, c−1 = (1, 0)′ and c = −α1κ . �

Let Xt = (X ′
t , . . . , X

′

t−k+1)
′. The companion form of (1) is defined

as

A =


(A1, A2, . . . , Ak−1) Ak

I(k−1)p 0


. (3)

Then (1) can be expressed as Xt = AXt−1 + µt + ϵt , where
µt = (µ′

t , 0, . . . , 0)
′ and ϵt = (ϵ′

t , 0, . . . , 0)
′. For VAR-models

Et [Xt+j] = AjXt +
j

i=1 A
i−1µt+j−i+1. Inserting in (2) and equating

coefficients the restrictions defining the exact LRE model may be
written as

c ′

1A1 + c ′

0 = 0, c ′

1A2 + c ′

−1 = 0, . . . , c ′

1Ak + c ′

−k+1 = 0, (4)

c ′

1µt+1 + c = 0, t = k + 1, . . . , T .

Similarly, one get for the inexactmodel by leading (2) onemore lag
and using iterated expectations that

(c ′

1A1 + c ′

0)Aj + c ′

1Aj+1 + c ′

−j = 0, j = 1, . . . , k − 1 (5)

(c ′

1A1 + c ′

0)Ak = 0
(c ′

1A1 + c ′

0)µt+1 + c ′

1µt+2 + c = 0, t = k + 1, . . . , T .

The conditions (4) and (5) are also necessary, so the following
proposition holds.

Proposition 1. For the VAR model (1) the following equivalences
hold.

(i) The exact LRE model is equivalent to the restrictions (4).
(ii) That {ut} are innovations is equivalent to the restrictions (5).

Proof. (i) The sufficiency is established above. On the other hand
Et [Xt+1] = A1Xt + · · · + AkXt−k+1 + µt+1 from (1), so
c ′

1Et [Xt+1]+ c ′

0Xt + c ′

−1Xt−1 +· · ·+ c ′

−k+1Xt−k+1 + c = (c ′

1A1 +

c ′

0)Xt +(c ′

1A2+c ′

−1)Xt−1+· · · (c ′

1Ak+c ′

−k+1)Xt−k+1+(c ′

1µt+1+

c) = 0 by (4).
(ii) The sufficiency is established above. To prove the necessity,

we use the expression for Et [Xt+1] and the definition of ut to
write ut = (c ′

1A1 + c ′

0)Xt + (c ′

1A2 + c ′

−1)Xt−1 + · · · + (c ′

1Ak +

c ′

−k+1)Xt−k+1 + (c ′

1µt+1 + c). Hence, using the expression for
Et [Xt+1] once more, Et [ut+1] = [(c ′

1A1 + c ′

0)A1 + (c ′

1A2 +

c ′

−1)]Xt + [(c ′

1A1 + c ′

0)A2 + (c ′

1A3 + c ′

−2)]Xt−1 + · · · + [(c ′

1A1 +

c ′

0)Ak−1 + (c ′

1Ak + c ′

−k+1)]Xt−k+2 + [(c ′

1A1 + c ′

0)Ak]Xt−k+1 +

[(c ′

1A1 + c ′

0)µt+1 + (c ′

1µt+2 + c)]. By (5) Et [ut+1] = 0. �
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