Economics Letters 121 (2013) 206-209

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

Notes on supermodularity and increasing differences in expected utility

Alejandro Francetich*

Department of Decision Sciences and IGIER, Bocconi University, Via Röntgen 1, 20136 Milan, Italy

HIGHLIGHTS

• I provide axiomatic foundations for supermodularity of Bernoulli utility functions.

- Axioms for quasi-supermodularity and supermodularity are compared.
- For parametric utilities, I provide axioms for increasing differences.
- Axioms for increasing differences and single crossing are compared.

ARTICLE INFO

Article history: Received 5 June 2013 Received in revised form 30 July 2013 Accepted 9 August 2013 Available online 17 August 2013

JEL classification: D01 D81

Keywords: Expected utility Supermodularity Quasi-supermodularity Increasing differences Single crossing

ABSTRACT

Many choice-theoretic and game-theoretic applications in Economics invoke some form of supermodularity or increasing differences for objective functions defined on lattices. These notes provide axiomatic foundations for these properties on expected-utility representations of preferences over lotteries. © 2013 Elsevier B.V. All rights reserved.

1. Introduction

These notes revisit the axiomatic foundations of the properties of supermodularity and of increasing differences for expectedutility representations of preferences defined over lotteries.¹ While the first of these properties relates to a single preference relation and the second one involves a family of preferences, mathematically, they are closely related: a supermodular function on a product lattice has increasing differences.

* Tel.: +39 3270303199.

E-mail address: alejandro.francetich@unibocconi.it.

2. Supermodular expected utility

2.1. Lattices and supermodularity

Let (X, \ge_X) be lattice, and denote the "join" and "meet" operations by \lor and \land , respectively. For any $f: X \to \mathbb{R}$, if $f(x \lor x') + f(x \land x') \ge f(x) + f(x')$ for any $x, x' \in X$, then f is supermodular. Following Li Calzi (1990) and Milgrom and Shannon (1994), f is quasi-supermodular if, for any $x, x' \in X$, we have that $f(x) \ge f(x \land x')$ implies $f(x \lor x') \ge f(x')$, with the corresponding implication for strict inequality. In words, for any $x, x' \in X$, if "meeting" x with x' "downgrades" x, then "joining" x and x' "upgrades" x', according to f. In other words, if the value of x under f is strictly higher than the value under f of $x \land x'$, then f cannot attain a higher value at x' than at $x \lor x'$.

¹ Echenique and Chambers (2009) explores a related issue in the context of ordinal preferences on finite lattices.

^{0165-1765/\$ –} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.econlet.2013.08.009

Supermodularity is a cardinal property, while quasisupermodularity is an ordinal implication of supermodularity. Any non-decreasing function satisfies the weak part of quasisupermodularity, and any strictly increasing function is quasisupermodular.

2.2. Mixture spaces and Borel probability measures

Let \mathcal{T} be a topology on X such that (X, \mathcal{T}) is a T1 space, that is, a space in which all singletons are closed sets. Denote by $\mathcal{B}(X)$ the Borel σ -field on X, and let $\Delta(X)$ denote the space of Borel probability measures on X. Finally, let $\Delta^0(X) \subseteq \Delta(X)$ be the subset of simple Borel probability measures on X, that is, the probability measures in $\Delta(X)$ that have finite support. In particular, for any $x \in X$, the point mass concentrated at x, δ_x , is an element of $\Delta^0(X)$.

A pair (*Z*, *), where *Z* is a set and * is an operation * : $[0, 1] \times Z \times Z \rightarrow Z$, is a mixture space (Fishburn, 1982) if the following hold.

- For all $z, z' \in Z, *(1, z, z') = z$.
- For all $z, z' \in Z$, and for all $\alpha \in [0, 1]$, $*(\alpha, z, z') = *(1 \alpha, z', z)$.
- For all $z, z' \in Z$, and for all $\alpha, \beta \in [0, 1]$, $*(\alpha, *(\beta, z, z'), z') = *(\alpha\beta, z, z')$.

Both $\Delta(X)$ and $\Delta^0(X)$, coupled with the operation of taking convex combinations of probability measures, $*(\alpha, \mu, \mu') = \alpha\mu + (1 - \alpha)\mu'$, form mixture spaces. Henceforth, * will denote this specific mixture operation.

Let $\mathcal{D} \subseteq \Delta(X)$ be a subset of probability measures that contains all simple probability measures and that forms a mixture space on its own; that is to say, $\Delta^0(X) \subseteq \mathcal{D}$ and $(\mathcal{D}, *)$ is a mixture space. A function $f : \mathcal{D} \to \mathbb{R}$ is linear in * if, for all $\mu, \mu' \in \mathcal{D}$ and all $\alpha \in [0, 1], f(*(\alpha, \mu, \mu')) = \alpha f(\mu) + (1 - \alpha) f(\mu').$

2.3. Preferences over lotteries and supermodular expected utility

Let $\succeq \subseteq \mathcal{D} \times \mathcal{D}$ be a complete preorder on \mathcal{D} . Since \mathcal{D} contains all point masses, \succeq induces a complete preorder on X, \succeq_X , given by $x' \succeq_X x$ if $\delta_{x'} \succeq \delta_x$ for any $x, x' \in X$. The asymmetric and symmetric parts of \succeq_X , denoted by \succ_X and \sim_X , respectively, are the relations induced by the asymmetric and symmetric parts of \succeq .

In choice-theoretic and game-theoretic applications, supermodularity is imposed on Bernoulli utility functions; these represent \succeq_X . However, the primitive preference is that over lotteries, namely \succeq . Hence, the relevant link is the link between supermodularity of representations of \succeq_X and properties of \succeq .

In the Mixture Space Theorem (Herstein and Milnor, 1953), the following three axioms are imposed on \geq .

- (a) \succeq is a complete preorder.
- (b) For all $\mu, \mu', \mu'' \in \mathcal{D}$, and for all $\alpha \in (0, 1), \mu' \succ \mu$ implies $*(\alpha, \mu', \mu'') \succ *(\alpha, \mu, \mu'')$.
- (c) For all $\mu, \mu', \mu'' \in \mathcal{D}$ such that $\mu \succ \mu' \succ \mu''$, there exists some $\alpha, \beta \in (0, 1)$ such that $*(\alpha, \mu, \mu'') \succ \mu' \succ * (\beta, \mu, \mu'')$.

Axiom (a) is a necessary assumption for \succeq to admit a numerical representation. Axiom (b) is an independence assumption, stating that the presence of a third lottery μ'' does not change the ranking of μ , μ' when mixed with "equal weight". Finally, Axiom (c) is a continuity or Archimedean axiom. Following Kreps (2013), this last axiom rules out the existence of "supergood" or "superbad" lotteries: no matter how high μ is ranked by the agent, for some mixture, μ' is still strictly preferred to this mixture of μ and μ'' . Similarly for μ'' : no matter how low it is ranked, μ' is still strictly worse than some mixture of μ and μ'' .

The Mixture Space Theorem states that a binary relation \succeq on \mathcal{D} satisfies these three axioms if and only if there exists a real-valued function u on \mathcal{D} representing \succeq that is linear in * and unique up to positive affine transformations. If $\mathcal{D} = \Delta^0(X)$, the von Neumann and Morgenstern Theorem (von Neumann and Morgenstern, 1953) establishes the existence of a real-valued function U on X that is also unique up to positive affine transformations and such that $u(\mu) = \int U d\mu$. The result extends to the case $\mathcal{D} = \Delta(X)$ if there exists a metric d on X such that (X, d) is separable, and if \succeq is continuous in the topology of weak convergence.

The function *U* in the von Neumann and Morgenstern Theorem represents \succeq_X , as $U(x) = u(\delta_x)$. Hence, the problem is to establish a link between properties of \succeq and supermodularity of *U*. The obvious link is given by the following axiom, Axiom (S).

Axiom (S). For all $x, x \in X$, $*\left(\frac{1}{2}, \delta_{x \wedge x'}, \delta_{x \vee x'}\right) \succeq *\left(\frac{1}{2}, \delta_x, \delta_{x'}\right)$.

Axiom (S) states that, for any two outcomes, the 50–50 mixture between the "highest" and the "lowest" of the two (under \ge_X) is weakly preferred to the 50–50 mixture between the outcomes. If we think of X as the product of two lattices, the axiom can be read as saying that a 50–50 mixture between "all-high" or "all-low" coordinates is weakly preferred to a 50–50 lottery between elements that feature both high and low coordinates. Thus, it can be read as an axiom about "complementarity across dimensions".

Theorem 1. Let (X, \geq_X) be a lattice, and let \succeq be a binary relation on $\Delta^0(X)$. Then, \succeq satisfies Axioms (a), (b), (c), and (S) if and only if there exists a supermodular real-valued function $U : X \to \mathbb{R}$ such that $u : \Delta^0(X) \to \mathbb{R}$ given by $u(\mu) = \sum_{x \in \text{supp}(\mu)} U(x)\mu(\{x\})$ represents \succeq . Moreover, U is unique up to positive affine transformations.

The 50–50 mixture specified by Axiom (S) is crucial in the proof of Theorem 1. For other mixtures, quasi-supermodularity follows instead. Consider the following weaker version of Axiom (S), Axiom (qS).

Axiom (qS). For all $x, x \in X$, there exists some $\alpha \in (0, 1)$ such that $*(\alpha, \delta_{x \wedge x'}, \delta_{x \vee x'}) \succeq *(\alpha, \delta_x, \delta_{x'})$.

Axiom (qS) states that, for any two outcomes, there exists a (strict) mixture between the "highest" and the "lowest" of the two that is weakly preferred to the same mixture between the outcomes themselves. However, this mixture may be different that 1/2, and it may depend on the choice of $x, x' \in X$.²

Theorem 2. Let (X, \geq_X) be a lattice, and let \succeq be a binary relation on $\Delta^0(X)$. Then, \succeq satisfies Axioms (a), (b), (c), and (S)if and only if there exists a quasi-supermodular real-valued function $U : X \to \mathbb{R}$ such that $u : \Delta^0(X) \to \mathbb{R}$ given by $u(\mu) = \sum_{x \in \text{supp}(\mu)} U(x)\mu(\{x\})$ represents \succeq . Moreover, U is unique up to positive affine transformations.

3. Increasing differences in expected utility

In this section, (X, \geq_X) is a poset (not necessarily a lattice), and $\mathcal{R}_{\Theta} := \{ \succeq^{\theta} : \theta \in \Theta \}$ is an indexed family of complete preorders on $\mathcal{D} \subseteq \Delta(X)$. The index set Θ is also endowed with a partial order, denoted by \geq_{Θ} . Following Milgrom and Shannon (1994), a function $F : X \times \Theta \to \mathbb{R}$ satisfies the single-crossing property if, for each $x, x' \in X$ and each $\theta, \theta' \in \Theta$ such that $x' >_X x$ and $\theta' >_{\Theta} \theta$, $F(x', \theta) \geq F(x, \theta)$ implies $F(x', \theta') \geq F(x, \theta')$, and $F(x', \theta) >$ $F(x, \theta)$ implies $F(x', \theta') > F(x, \theta')$; if we have $F(x', \theta') - F(x, \theta') \geq$ $F(x', \theta) - F(x, \theta)$, then F has increasing differences.

² If the mixture in Axiom (qS) is uniform across *x*, then representations will satisfy the following property, weaker than supermodularity but stronger than quasi-supermodularity. A function $f : X \to \mathbb{R}$ defined on a lattice (X, \geq_X) is α -supermodular if there exists some $\alpha \in [0, 1]$ such that, for all $x, x' \in X$, $\alpha f(x \land x') + (1 - \alpha)f(x \lor x') \geq \max\{\alpha f(x) + (1 - \alpha)f(x'), \alpha f(x') + (1 - \alpha)f(x)\}$.

Download English Version:

https://daneshyari.com/en/article/5059100

Download Persian Version:

https://daneshyari.com/article/5059100

Daneshyari.com