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• The marginal effects of the copula-based bivariate binary choice model are derived.
• The signs of the marginal effects are shown to be determined by the signs of the coefficients using the properties of a copula.
• A real-data application is provided.

a r t i c l e i n f o

Article history:
Received 1 August 2013
Received in revised form
26 August 2013
Accepted 28 August 2013
Available online 4 September 2013

JEL classification:
C31
C35

Keywords:
Copula
Binary choice
Marginal effect

a b s t r a c t

This paper discusses the copula-based approach of a bivariate binary choice model. We derive the
marginal effects of explanatory variables on an outcome of interest (both direct and indirect) in themodel.
We also show that the signs of the marginal effects are determined by the signs of the coefficient param-
eters. A real-data application is provided.
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1. Introduction

A bivariate binary choice model is a frequently used model in
applied microeconomics. In particular, its recursive form is practi-
cally useful when estimating the effect of an endogenous dummy
(treatment) variable on a binary outcome. In binary choice mod-
els (or any other nonlinear model), the coefficients on explanatory
variables do not measure the marginal effects of these variables. In
order to interpret the economic significance of explanatory vari-
ables, it is necessary to compute the marginal effects from the es-
timated coefficients. In this paper, we derive the marginal effects
in a bivariate binary choice model. Besides a traditional bivariate
probit approach, we also consider a copula-based approach. We il-
lustrate by considering a real-data application.

2. The model

The model consists of two equations: for an observation i, i =

1, . . . ,N ,
y1i = 1(αy2i + x′

1iβ + ε1i ≥ 0),
y2i = 1(x′

2iβ2 + ε2i ≥ 0), (1)
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where 1(·) is an indicator function. The vectors x1 and x2 are sets of
explanatory variables.1 The variable y2 in the first equation is the
primary interest, but it is potentially endogenous. The endogene-
ity issue arises when the errors ε1 and ε2 are not independent. In
order to estimate the coefficient parameters consistently, the de-
pendence between ε1 and ε2 needs to be taken into consideration.
The almost exclusively used approach is maximum likelihood esti-
mation (MLE), where the log likelihood function has a general form
ln L =

N
i=1 ln Pr(y1i, y2i), where Pr(y1i, y2i) is the joint probability

of y1 and y2.
In order to implement MLE, we need to specify the joint dis-

tribution of the error terms, F(ε1, ε2). A standard approach is to
assume that these errors are jointly normally distributed. Under
bivariate normality, F(ε1, ε2) = Φ2(ε1, ε2; ρ), where Φ2(·) is the
cumulative distribution function (cdf) of the bivariate normal dis-
tribution with the coefficient of correlation ρ. The joint probabil-
ity of y1 and y2 is Pr(y1, y2) = Φ2


s1(αy2 + x′

1β1), s2(x′

2β2); s1
s2ρ), where sj = 2yj − 1 for j = 1, 2. The model is called a (re-
cursive) bivariate probit model (Greene, 2008).

1 Wilde (2000) shows that the model is identified even when the sets x1 and x2
are the same.
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3. The copula approach

Winkelmann (2012) discusses the copula-based approach to
allow non-normal dependence. In short, a copula C(·) is a func-
tion that binds univariate marginal distributions together to rep-
resent a joint distribution. Using a copula, the joint distribution of
ε1 and ε2 is F(ε1, ε2) = C(F1(ε1), F(ε2); θ), where Fj(·) is the cdf
of a univariate distribution of εj and θ is a dependence parame-
ter that governs the degree of dependence. For notational simplic-
ity, we suppress the dependence parameter from the expression
hereafter. We also assume that εj is a continuous random vari-
able, although the copula approach is not limited to the continu-
ous case. Define uj = F(εj) with uj ∈ [0, 1]; then, copula func-
tion C satisfies the following properties: (i) C(1, u2) = u2 and
C(u1, 1) = u1, (ii) C(0, u2) = C(u1, 0) = 0, and (iii) for u1 ≤ u′

1
and u2 ≤ u′

2, C(u′

1, u
′

2) − C(u1, u′

2) − C(u′

1, u2) + C(u1, u2) ≥ 0.
The last property says that C is 2-increasing.

These properties are essential to determine the signs of the
marginal effects of the copula-based bivariate binary choicemodel.
Define Cj(u1, u2) = ∂C(u1, u2)/∂uj for j = 1, 2 and C12(u1, u2) =

∂2C(u1, u2)/∂u1∂u2. Then, it can easily be seen that property (iii)
implies that C12(u1, u2) ≥ 0. It can also be shown that Cj(u1, u2) ≥

0 and 1 − Cj(u1, u2) ≥ 0. To show the former, set u2 = 0 < u′

2.
Then, by properties (ii) and (iii), C(u′

1, u
′

2) − C(u1, u′

2) ≥ 0, which
is directly followed by C1(u1, u2) ≥ 0. To show the latter, set
u2 < u′

2 = 1. Then, by properties (i) and (iii), C(u′

1, 1)−C(u1, 1)−

C(u′

1, u2)+C(u1, u2) = u′

1−u1−

C(u′

1, 1) − C(u1, 1)


≥ 0. Then,
it is clear that 1 − C1(u1, u2) ≥ 0.

Using a copula, the joint probability of y1 and y2 is

Pr(y1, y2) = y1y2 − y1s2F2(−x′

2β2) − y2s1F1(−αy2 − x′

1β1)

+ s1s2C(F1(−αy2 − x′

1β1), F2(−x′

2β2)).

In applications, researchers need to choose a copula from several
available copulas.2 Researchers also have freedom to choose the
marginal distributions F1(·) and F2(·). When themarginal distribu-
tions are standard normal distributions and the copula is Gaussian,
the copula-based model is the same as the bivariate probit model.

4. Marginal effects

In the binary choice model, the coefficient parameters do not
have direct economic interpretations. We need to compute the
marginal effects of the explanatory variables. The outcome of the
structural equation, y1, is usually themain interest. Researchers are
often interested in the effect of the endogenous dummy y2 on the
expected value of y1. It can be computed as (1− F1(−α − x′

1β)) −

(1 − F1(−x′

1β1)) = F1(−x′

1β) − F1(−α − x′

1β). Since F1(·) is a
non-decreasing function, the effect has the same sign as α.

The effects of other explanatory variables on y1 may also be
interesting. Depending whether the variable appears in x1 or in
x2, the channels through which the explanatory variable affects y1
differ. While a change in x1 directly affects E(y1) (direct effect), a
change in x2 affects E(y1) through a change in y2 (indirect effect).
Even though Christofides et al. (1997) derive the marginal effects
in the bivariate probit model, the model is not in recursive form.
Greene (1998) derives the marginal effects in recursive form. In
this paper, we derive the marginal effects of the copula-based
model, and we also show that the signs of the marginal effects are
determined by the signs of the coefficient parameters.

2 The list of copulas is available, for example, in Nelsen (2006).

In a general expression, E(y1) = Pr(y1 = 1) = Pr(y1 = 1, y2 =

0) + Pr(y1 = 1, y2 = 1). The marginal effects are obtained by
taking derivatives with respect to the corresponding variables.3

Under normality, E(y1) = Φ2(x′

1β1, −x′

2β2; −ρ)+Φ2(α+x′

1β1,
x′

2β2; ρ). The direct effect is its derivative with respect to x1:

∂E(y1)
∂x1

=


φ(x′

1β1) × Φ


−x′

2β2 + ρx′

1β1
1 − ρ2



+ φ(α + x′

1β1) × Φ


−x′

2β2 + ρ(α + x′

1β1)
1 − ρ2


× β1.

The sign of this marginal effect is the same as the sign of β1, since
all the terms in the square brackets are positive. The indirect effect
is the derivative with respect to x2:

∂E(y1)
∂x2

= φ(x′

2β2) ×


Φ


α + x′

1β1 − ρx′

2β2
1 − ρ2



− Φ


x′

1β1 − ρx′

2β2
1 − ρ2


× β2.

The sign of this effect depends on the signs of β2 and α. When
α > 0, the square bracket expression will be positive, since Φ(·)
is an increasing function, and then, the effect has the same sign as
β2. When α < 0, the sign of the effect is opposite to the sign of β2
as the square bracket expression becomes negative.

In the copula-based model, E(y1) = 1 − F1(−α − x′

1β1) + C(F1
(−α − x′

1β1), F2(−x′

2β2)) − C(F1(−x′

1β1), F2(−x′

2β2)). Taking the
derivative, the direct effect is

∂E(y1)
∂x1

=


1 − C1(F1(−α − x′

1β1), F2(−x′

2β2))

× f1(α + x′

1β1)

+ C1(F1(−x′

1β1), F2(−x′

2β2)) × f1(x′

1β1)


× β1,

where f1(·) is the probability distribution function (pdf) of ε1 with
f1(·) ≥ 0. As shown above, C1(·) and 1 − C1(·) are positive.
Therefore, the sign of the direct effect is the same as that of β1.
The indirect effect is

∂E(y1)
∂x2

= −

C2(F1(−α − x′

1β1), F2(−x′

2β2))

− C2(F1(−x′

1β1), F2(−x′

2β2))

× f2(−x′

2β2) × β2.

As in the bivariate probit model, the indirect effect in the copula-
based model also depends on the signs of α and β2. Suppose that
α > 0. Then, F1(−α − x′

1β1) ≤ F1(−x′

1β1) since the cdf is non-
decreasing. Given this, the fact that C12(·) ≥ 0 implies that the
square bracket expression is negative, and the effect has the same
sign as that of β2. Likewise, if α < 0, then the effect has the oppo-
site sign to that of β2.

These discussions are the marginal effects of continuous vari-
ables so that we are able to take the derivatives. For discrete vari-
ables, we can compute the differences, E(y1|x1 = 1)−E(y1|x1 = 0)
and E(y1|x2 = 1) − E(y1|x2 = 0), as the direct effect and the in-
direct effect, respectively. In the same way as for continuous vari-
ables, the signs of the effects of discrete variables can be derived
from the properties of a copula.

3 More precisely, E(y1) =

E(y1|x)dF(x) ≈ N−1N

i E(y1|xi), where x is a set
of variables, x1 and x2 , and F(X) is the distribution function of x. The following
derivations of themarginal effects are the derivatives of E(y1|xi). Themarginal effect
on E(y1) can be computed by summing over observations. This marginal effect is
referred to as ‘‘average marginal effect’’. For notational simplicity, we suppress the
summation.
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