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a b s t r a c t

Temporal aggregation is known to affect the persistence of time series. We study the aggregation
of flow variables as well as stock data, and difference-stationarity is allowed for. Moreover, moving
averages encounteredwhen computing annual growth rates (seasonal differences) are investigated. Using
a relative persistence measure (long-run variance ratio), it is clarified when persistence is increased or
decreased, and by howmuch. Our results are exact for a finite aggregation level. They are illustrated with
monthly time series. Approximate results for the growing aggregation level are provided, too.
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1. Introduction

Temporal aggregation is a standard routine whenworking with
time series. Even if the researcher does not aggregate him- or
herself, the statistical offices making available the data may only
provide aggregates. It has been empirically documented that tem-
poral aggregation affects persistence measures. With the growing
aggregation level there are analytical results by Working (1960)
and Tiao (1972). For finite aggregation levels, however, there is
no clear answer whether persistence is increased or decreased,
and by how much. In this letter we give an answer to these ques-
tions for the long-run variance ratio as a relative persistence mea-
sure. The results are exact for a finite aggregation level and can be
approximated with the growing level. We also allow for nonsta-
tionary series where differencing is required to obtain stationarity.
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Moreover, we study the situation where seasonal growth rates are
stationary, but annual growth rates (seasonal differences) are com-
puted for convenience. Hassler and Demetrescu (2005) demon-
strated experimentally and empirically that annual growth rates
will dramatically exaggerate the degree of persistence relative to
the persistence present in the seasonal rates. Their arguments are
reinforced here theoretically in a general framework.

We study the aggregation of both, stock variables and flow vari-
ables. Typical flowdata aremonthly consumption,where temporal
aggregation to quarterly or annual data consists of cumulating the
monthly flows to the total quarterly or annual flow. Typical stock
series are daily prices or exchange rates. In order to obtain weekly
data, one may compute the average of all days of the week, or al-
ternatively, onemay take the last weekday as representative of the
whole week (called skip sampling).

It has been claimed that the effect of temporal aggregation on
persistence in finite samples is an empirical matter; see for in-
stance Rossana and Seater (1995), and more recently Paya et al.
(2007), who employed several widely used persistence measures
as the sumof autoregressive coefficients, the largest autoregressive
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root and (cumulated) impulse responses: ‘‘statistical theory is not
definite because some of the results are asymptotic and leave open
the question what will happen with actual data’’, Rossana and
Seater (1995, p. 443). Here, we argue that exact theoretical results
on the aggregational effect with respect to persistence are readily
available when using a relative measure, since aggregation affects
both, the serial correlation and the variance.We study the long-run
variance ratio, which technically equals the normalized spectrum
at frequency zero and has been applied e.g. by Cogley and Sargent
(2005); see also Cochrane (1988). We find that persistence is not
an invariant property of a process, but necessarily linked to the
frequency of sampling. In particular, we learn for aggregation of
(integrated) stock variables that skip sampling affects persistence
very differently from averaging.

The next section provides the notation and assumptions, and
reviews alternative aggregation schemes. Section 3 contains the
theoretical results on aggregation and differencing with numerical
illustrations and discussion. In Section 4,we usemonthly exchange
rate data to illustrate that our theoretical results may explain well
empirical evidence. The concluding section discusses further im-
plications for applied work. Mathematical proofs of Propositions 1
through 3 are relegated to the working paper version of this letter;
see Hassler (2013).

2. Notation and assumptions

The univariate time series data are assumed to be generated by
a (covariance) stationary process {yt}, where the autocovariances
at lag h are denoted as

γ (h) = E[(yt − E(yt))(yt+h − E(yt+h))] = γ (−h). (1)

The expectation µt = E(yt) may be constant or not. The stochastic
deviations are assumed to follow a regular linear process with an
absolutely summable sequence of impulse responses {cj}.

Assumption 1. The process {yt}, t ∈ Z, is given by

yt = µt +

∞
j=0

cjεt−j with
∞
j=0

|cj| < ∞,

c0 = 1, and
∞
j=0

cj ≠ 0,

where {εt} is a zero mean white noise process with variance
Var(εt) = σ 2.

Next to the variance, Var(yt) = γ (0), we define the long-run
variance ω2

= LrV(yt) depending on all temporal correlations:
LrV(yt) =


∞

h=−∞
γ (h). Under the above assumptions it holds

that

γ (0) = σ 2
∞
j=0

c2j and LrV(yt) = σ 2


∞
j=0

cj

2

, (2)

such that LrV(yt) is positive and finite. Aggregation under the lim-
iting cases of LrV(yt) = 0 or LrV(yt) = ∞ arising from fractional
integration is covered in Souza (2005), Tsai and Chan (2005), and
Hassler (2011). Campbell and Mankiw (1987) popularized the cu-
mulated impulse responses as measure of persistence, CIR(y) =

∞

j=0 cj. It does not rely on an autoregressive representation of fi-
nite order, and has further been advocated by Andrews and Chen
(1994) as being superior to the largest autoregressive root in some
cases. Note, however, that temporal aggregation will affect both,
the variance and the autocovariances, such that a priori the aggre-
gational effect on CIR(y) is unclear.

In this letter, persistence ismeasured through the long-run vari-
ance ratio:

VR(y) :=
LrV(yt)
Var(yt)

. (3)

This long-run variance ratio VR(y) has been used by Cochrane
(1988), and it equals the normalized spectrum at frequency zero
employed by Cogley and Sargent (2005) up to the multiplicative
constant 1/2π . In the case of an AR(1) process, yt = a yt−1 + εt , it
holds that

VR(y) =
1 − a2

(1 − a)2
=

1 + a
1 − a


> 1 if a > 0
= 1 if a = 0
< 1 if a < 0.

(4)

Hence, we call a process persistent if VR(y) > 1, and say it displays
negative persistence if VR(y) < 1. For applied work, VR(y) has to be
estimated from a sample of size T . The consistent estimation of a
(long-run) variance from stationary data is a standard problem of
course. Consistent long-run variance estimation is discussed e.g. in
Hamilton (1994, Section 10.5).

Clearly, many time series are not stationary. It is often assumed
that the observed variable {zt} has to be differenced to obtain
stationarity. With the usual difference operator ∆ we define

∆rzt = yt , t = 1, 2, . . . , T , (5)

for some natural number r , where {yt} is a (weakly) stationary
sequence characterized in Assumption 1. In the case that r = 0,
the observable {zt} itself is covariance stationary, while r = 1 gives
zt − zt−1 = yt . In most applications the order of differencing is
1. In the case of nonstationarity (r > 0), the long-run variance
ratio is computed in terms of stationary differences: VR(∆rz) =

LrV(∆rzt)/Var(∆rzt).
Let {zt}, t = 1, 2, . . . , T , denote a sample of univariate time se-

ries observations to be aggregated over m periods. We assume for
simplicity that T is a multiple ofm, T = mN . The aggregate is con-
structed for the new time scale τ . In the case of flow variables ag-
gregation means cumulating m neighboring, non-overlapping ob-
servations to determine the total flow overm sub-periods,zτ := zmτ + zmτ−1 + · · · + zm(τ−1)+1, τ = 1, 2, . . . ,N. (6)

With stock data two aggregation schemes are encountered in prac-
tice. Often, stock variables are averaged, which is formally related
to the cumulation of stocks with obvious notation: zτ =zτ/m. The
usage of the new time scale τ indicates that the averages are not
overlapping. Alternatively, stock variables are sometimes aggre-
gated by systematic sampling or skip sampling where only every
mth data point is observed,

żτ := zmτ , τ = 1, 2, . . . ,N. (7)

If the basic variable {zt} is nonstationary as in (5), then the ag-
gregates will be nonstationary, too. Let ∇ stand for the differences
operating on the aggregate scale:

∇zτ =zτ −zτ−1 and ∇ żτ = żτ − żτ−1.

For the differenced aggregates {∇
rzτ } and {∇

r żτ } we define the
persistencemeasures as VR(∇rz) and VR(∇r ż). Again, r = 0 refers
to the situation where zt = yt and hencezτ and żτ are stationary.
Generally, it will make a difference whether one first aggregates
and differences the aggregates, or the other way round, and the
difference shall be spelled out in the next section.

Contrasting the case of non-overlapping averages, zτ , we also
consider moving averages of the following type, where L denotes
the usual lag operator:

Sm(L) zt = zt + zt−1 + · · · + zt−m+1.
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