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h i g h l i g h t s

• We study the class of shortest path games.
• We propose new cost sharing rules satisfying core selection.
• These rules allocate shares according to some lexicographic preference relation.
• A computational procedure is provided.
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a b s t r a c t

For the class of shortest path games,wepropose a family of newcost sharing rules satisfying core selection.
These rules allocate shares according to some lexicographic preference relation. A computational
procedure is provided. Our results relate to those of Tijs et al. (2011).
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1. Introduction

In this paper we consider shortest path problems, which arise
in networkswhere the cost of shipping demand units through each
arc is linear. This framework allows to model public transporta-
tion systems (connecting several urban areas) among other appli-
cations.

Each agent has to ship their demand from the source to their
location, using the cost-minimizing route. In doing so, they might
have to use the locations of other agents. There are two important
issues in this context: (i) computing the shortest path network and
(ii) designing sensible cost allocations for the resulting cooperative
game. The issue (i) has been solved by Dijkstra (1959), who pro-
posed an algorithm allowing to compute the shortest path to any
location in a network. In this paper, we focus on (ii).
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Shortest path problems are part of the larger family of network
(and source-connection)models— see Sharkey (1995) for a review.
It is known from Rosenthal (2013) that: (a) the core of a shortest
path game is nonempty and (b) the Shapley value may produce
an allocation that is not stable. A trivial core allocation is the one
that charges the cost of their shortest path to the demander of each
unit. This method does not remunerate agents whose cooperation
helps the demanders reduce their connection cost. Surprisingly,
the literature has not proposed stable cost sharing methods that
are more sensible than the aforementioned rule. The objective of
the present paper is to address this deficiency. Our approach is in
the vein of cost sharing problems with technological cooperation
introduced in Bahel and Trudeau (2013).

We propose a family of methods that assign cost shares ac-
cording to some lexicographic ordering. These methods are shown
to produce an extreme allocation in the core of every shortest
path problem. Our results relate to those of Tijs et al. (2011), who
showed the existence of these lexicographic extrema in the core of
balanced games. Our algorithm allows to compute these extrema
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Fig. 1. A three-agent SPP.

for shortest path games. The average of these lexicographic rules
sharesmany propertieswith the nucleolus (core selection, symme-
try, continuity, . . . ) and it has the advantage (over the nucleolus) of
being computable via our procedure.1

2. Preliminaries

Let us consider a fixed point s from which agents (residing at
various locations) need to ship their respective demands of some
homogeneous goods— s is called the source. A Shortest Path Problem
(SPP) is a tuple (N, c, x), where (i)N is the set of agents (or vertices)
that need to connect to the source s; (ii) c = {c(i, j)|i, j ∈ N ∪

{s}, i ≠ j} is a collection (of nonnegative numbers) giving the unit
cost of shipping demands through every edge (i, j) s.t. i ≠ j; (iii)
x ∈ NN is the demand profile: each agent i has xi ∈ N units of
demand to ship from the source to her location. Note thatwedonot
view the source s as a player. Also observe that the unit costs c(i, j)
need not be symmetric: wemay have c(i, j) ≠ c(j, i) for some i and
j. If instead c(i, j) = c(j, i) for any distinct i, j ∈ N ∪{s}, we will say
that the SPP has symmetric arcs.

For the rest of this section, we consider a fixed set of agents N ,
and a fixed cost structure c. Only the demand profile x may vary
from one problem to the other.

Definition 1. Let i ∈ N .We call path (of lengthK ) to i any sequence
p ≡ (pk)k=0,...,K such that: (i) pk ∈ N ∪ {s}, for k = 0, 1, . . . , K ; (ii)
p0 = s and pK = i; (iii) pk ≠ pk′ for any distinct k, k′.

Note that all paths p originate from the source s and cross any
location pk only once. Thus, the length of each path and the number
of paths to any given i ∈ N are both finite. We denote by P (i) the
set containing all paths to i. For any path p of length K , let [p] refer
to the set of players in the range of p, that is: [p] ≡ {i ∈ N| pk =

i for some k = 1, . . . , K}. For any subset M ( N and any path p
(of length K ) such thatM ( [p], we will write p \ M to refer to the
unique path (of length K − |M|) where the agents of M have been
deleted and the remaining agents (of [p]) appear in the same order
as in p. To ease on notation, we will often write i instead of {i} and
p\ i instead of p\ {i}, for any i ∈ [p]. Finally, for anyM ⊆ N wewill
write Π(M) to refer to the set containing all permutations ofM .

Given P = (N, c, x), one can extend the cost function c to paths
as follows: for any path p (of length K ) to i,

c(p) =

K
k=1

c(pk−1, pk).

In words, c(p) stands for the cost of shipping one unit from the
source to agent i via the path p. For any i ∈ N , we call shortest path
to i any path p∗

∈ P (i) that solves the problemminp∈P (i) c(p). Note
that there exists a shortest path to any i ∈ N — since the set P (i)
is nonempty and finite; but it may not be unique.

Example 1. Consider the SPP (with symmetric arcs) given by P =

(N, c, x), where N = {1, 2, 3}, x = (2, 0, 1) and the cost structure

1 The two solution concepts are different, as pointed out by Tijs et al. (2011).

is depicted by Fig. 1. For example, we have c(s, 1) = 200, c(3, 1) =

c(1, 3) = 50 and c(2, 1) = c(1, 2) = 10.
One can see that there are 5 paths to agent 1, (s, 1), (s, 2, 1), (s,

3, 1), (s, 2, 3, 1), (s, 3, 2, 1); and the shortest path to 1 is (s, 2, 1),
with cost c(s, 2, 1) = 80 + 10 = 90. For agents 2 and 3, the costs
of the respective shortest paths are c(s, 2) = 80 and c(s, 3) = 100.

For any vector y ∈ RN and any subset S ⊆ N , let y(S) ≡


i∈S yi.
It is not difficult to see that there is a natural way to formulate the
cooperative game (with transferable cost) associated with P .

Define the cost of any nonempty coalition S ⊆ N as follows:

CP(S) ≡ min


j∈S

xjc(pj) | pj ∈ P (j) and [pj] ⊆ S, ∀j ∈ S


. (1)

Eq. (1) gives the lowest possible cost of shipping (from the source)
the respective demands of the members of S when using only
the connections available in S. Note in particular that CP(S) = 0
whenever x(S) = 0 (there is no demand to ship). We also adopt
the usual convention that CP(∅) = 0. As an illustration, for the
problem P depicted in Example 1, note that we have CP(N) =

2 × c(s, 2, 1) + 0 × c(s, 2) + 1 × c(s, 3) = 180 + 100 = 280.

Definition 2. Given a shortest path problem P = (N, c, x), we
have the following.

(i) An allocation is a profile of cost shares, y ∈ RN , such that
y(N) = CP(N). Let A(P) be the set containing all cost alloca-
tions.

(ii) The core of P is the set

Core(P) ≡ {y ∈ A(P)|y(S) ≤ CP(S), for any S s.t. ∅ ≠ S ⊂ N}.

An allocation ywill be called stable if y ∈ Core(P).

Thus, a cost allocation is a way of ‘‘splitting’’ the cost CP(S) of
the coalition S between its members. Note that we allow for
negative cost shares, which are desirable if we have (for instance)
agents who demand zero while providing the others with a cheap
connection to the source. Definition 2-(ii) is the standard notion
of stability: no coalition S should jointly pay more than its stand-
alone cost CP(S).

3. Analysis

In the remainder of the paper, unless otherwise specified, we
consider an arbitrary but fixed SPP given by P = (N, c, x), where
0N

≠ x ∈ NN .

3.1. Decomposition

In an SPP, shipping one unit to a given agent does not affect the
cost of shipping the next unit (to any agent). Using this observation,
we first study ‘‘elementary’’ SPP, which have the property that only
one agent has a (unitary) demand.

For every j ∈ N , denote by ej ∈ RN the vector characterized by
ejj = 1 and eji = 0, if i ∈ N \ j. Let A, B ⊂ RN and α ∈ R. We use
the following conventions: A + B ≡ {a + b|a ∈ A and b ∈ B};
α · A ≡ {αa|a ∈ A}. This notation allows to write the result
hereafter.

Lemma 1. Given the problem P = (N, c, x), we have
j∈N

xj · Core(P j) ⊆ Core(P),

where P j
≡ (N, c, ej).

The proof is omitted. It trivially follows from Eq. (1) and Defini-
tion 2.
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