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h i g h l i g h t s

• We propose an empirical likelihood-based method of inference for the generalized entropy class of inequality measures.
• We conduct a Monte Carlo study to assess the size and power of our proposed test.
• Simulations show that our method matches the performance of the delta method, and in some cases outperforms it.
• We apply our method to some Canadian household income data for illustrative purposes.
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a b s t r a c t

We propose an empirical likelihood-based method of inference for comparing inequality between
two populations. A series of Monte Carlo experiments are used to assess our method’s finite sample
performance. We illustrate our approach using some Canadian household income data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ever since the work of Atkinson (1970), there has been sig-
nificant research interest in economic inequality and poverty. Al-
though the measurement of inequality and poverty are important,
statistical inference for such measures have gained considerable
interest in recent years. Thework of Kakwani (1993), Zheng (2001),
Biewen (2002) and Davidson and Flachaire (2007) serve to high-
light the importance of statistical inference in measuring inequal-
ity and poverty rather than just the incidence.

The growing body of literature surrounding the theory of
inequality measurement has been accompanied by increasing
availability of income data distribution which have armed
researchers with the capability to conduct more sophisticated
analyses. Statistical inference for inequality measures was largely
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neglected until the work of Cowell (1989). Recently, Thompson
(2010) derived the asymptotic properties of vector measures of
inequality (and poverty). He argued that since there is often no
‘‘best’’ measure of inequality or poverty, multiple measures could
be used.

Our method of inference relies on empirical likelihood (EL),
a powerful nonparametric statistical method pioneered by Owen
(1988, 1990). An advantage of empirical likelihood is that no
assumptions are needed regarding the underlying distribution of
the data. Thompson (2013) used the approach formaking inference
on poverty measures which utilize relative poverty lines. His
main focus was to compare poverty between two subgroups of
a population that share a common poverty line. We depart from
focusing on poverty measures and turn our attention to inequality
measures (more specifically, we limit our focus to the generalized
entropy class of inequality measures).

The remainder of this paper is organized as follows. In Section 2,
we provide a brief overview of inequality measures. In Section 3,
we present our methodology. In Section 4, we examine the
finite sample performance of our method using a Monte Carlo
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simulation. In Section 5, we demonstrate the practicality of our
method using an empirical application.

2. Inequality measures

In this section,we provide a basic overview of themeasurement
of inequality. For a more thorough treatment of the literature,
see Cowell (2011) or Cowell (2000). Before proceeding, we need
to introduce some notation. Following Thompson (2010), we
generalize our approach for vector measures of inequality. Let Y =

(Y1, . . . , YJ)
′ be a random vector whose value is determined by

a set of attributes (e.g., income, education, etc.) for an individual
from a certain population. In the case where we are interested in
only one attribute but we want to consider J distinct measures, we
will have Yj = Yk for all j, k. Let Fj be the distribution function of Yj.

There are several different scalar measures of inequality that
exist in the literature. We focus exclusively on the generalized
entropy class of measures which fulfill the most widely accepted
axioms including decomposability (see, e.g., Cowell, 2000).1 For
the random vector Yj, such measures can be written as Ij =

Ej(hj(yj, µj, αj)) where Ej denotes expectation under distribution
Fj, hj(yj, µj, αj) is some real-valued function, µj is the mean of
Fj, and αj is an exogenous parameter (and thus its choice is
subjective). Formally, we have

Ij =


hj(yj, µj, αj)dFj(yj),

where µj =

yjdFj(yj) and

hj(yj, µj, αj) =

[(yj/µj)
αj − 1]/(α2

j − αj) αj ≠ 0, 1
− log(yj/µj) αj = 0
yj log(yj/µj)/µj αj = 1.

Let µ = (µ1, . . . , µJ)
′ be the vector of means. A vector of

inequality measures can be written as I = (I1, . . . , IJ)′.

3. Empirical likelihood-based inference

The empirical likelihood method was first brought to the
forefront by Owen (1988, 1990). It is a nonparametric method of
inference and an alternative to the bootstrap. For an extensive
overview, see Owen (2001).

The basic framework can be explained as follows. Let y1, . . . , yn
be independent observations with common distribution function
F0. For any distribution function F , let pi ≥ 0 be the probability
associated with yi, with

n
i=1 pi = 1. Define L(F) = Πn

i=1pi
as the nonparametric likelihood function for F . Maximizing L(F),
subject to the constraints on pi, yields pi = n−1. In other words,
the nonparametric likelihood function attains its maximum when
equal weight is placed on each observation.

Let θ0 = T (F0) be a J-dimensional parameter vector for
some function T . Analogous to the parametric likelihood case,
inferences about θ0 can be made using the empirical likelihood
ratio L(F)/L(F̂), where F̂ is the empirical distribution function.

Next, suppose we have r estimating functions g(Y ; θ) =

(g1(Y ; θ), . . . , gr(Y ; θ)) such that EF (g(Y ; θ)) = 0. The main
purpose of such functions is to identify the parameters of the
problem. The profile empirical likelihood ratio function can then
be written as

R(θ) = max


n

i=1

npi

pi ≥ 0,
n

i=1

pi = 1,
n

i=1

pig(yi; θ) = 0


.

1 The Atkinson class of inequality measures, and the Gini index are some of the
other well established measures of inequality.

Undermild regularity conditions, it canbe shown that−2 logR(θ0)
d
−→ χ2

(J).
2 Details on the computation of the profile likelihood ratio

function can be found in Owen (2001, Chapter 3.14).3
Our main focus in this paper is to compare inequality between

two distinct populations.4 To distinguish between the two
populations, let superscripts A and B hereby indicate association
with population A and B, respectively. If we let D0 = (D1,0, . . . ,
DJ,0) = (IB1,0 − IA1,0, . . . , I

B
J,0 − IAJ,0), we can test the null hypothesis

thatD0 = D. Usually, applied researcherswould bemost interested
in testing the null hypothesis that IA0 = IB0 , which is equivalent to
testing D0 = 0. To apply the empirical likelihood-based inference
method to the generalized entropy class of inequality measures,
we need to encode the parameters of our problem into suitable
estimating functions.

Given that we are interested in comparing two populations, the
profile empirical likelihood ratio function is

R(θA, θB) = max

 nA
i=1

nApAi
nB
i=1

nBpBi

pAi ≥ 0, pBi ≥ 0,

nA
i=1

pAi = 1,
nB
i=1

pBi = 1,

nA
i=1

pAi g(y
A
i ; θA) = 0,

nB
i=1

pBi g(y
B
i ; θB) = 0

 ,

where θA
= (µA, IA), θB

= (µB, IA,D), and the estimating func-
tions are

g(Y A
; θA) =



Y A
1 − µA

1
...

Y A
J − µA

J
h1(Y A

1 , µA
1, α1) − IA1
...

hJ(Y A
J , µA

J , αJ) − IAJ


,

and

g(Y B
; θB) =



Y B
1 − µB

1
...

Y B
J − µB

J
h1(Y B

1 , µB
1, α1) − IA1 − D1

...

hJ(Y B
J , µB

J , αJ) − IAJ − DJ


.

Sincewe are only interested in conducting hypotheses onD, the
remaining parameters in the µA, µB and IA vectors are regarded
as ‘‘nuisance’’ parameters. Following Owen (1990), we can ‘‘profile
out’’ such parameters by maximizing over them. So the empirical
likelihood ratio function for D is

R(D) = max
µA,µB,IA

R(µA, µB, IA,D).

To compute R(D) for any vector D, we can follow Owen (1990)
and use a nested algorithm which involves an ‘‘inner’’ and ‘‘outer’’

2 A bootstrap calibration is also possible (see Owen, 2001, Chapter 3.3).
3 Computational routines for several statistical packages are available on Owen’s

website: http://www-stat.stanford.edu/~owen/empirical/.
4 There have been numerous studies done on empirical likelihood for the two

population case (see, e.g., Wu and Yan, 2012).
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