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h i g h l i g h t s

• When distribution is highly dimensional the maximum likelihood procedure is non-operational.
• The proposed sequential procedure constructs a multivariate distribution using lower-dimensional ones.
• The procedure provides excellent fit in financial applications.
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a b s t r a c t

We propose a new sequential procedure for estimating multivariate distributions in cases when conven-
tional maximum likelihood has too many parameters and is therefore inaccurate or non-operational. The
procedure constructs a multivariate distribution and its pseudo-likelihood sequentially, in each step us-
ing lower-dimensional distributions with a small number of parameters. In an application, the procedure
provides excellent fit when the dimension is moderate, and remains operational when the conventional
method fails.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider the problem of constructing a high dimensional
distribution. As an example, suppose we wish to estimate a
d-dimensional Student-t distribution. The problem has at least
d(d − 1)/2 parameters. The conventional approach is to construct
a joint log-density from this d-dimensional distribution and use it
in a maximum likelihood (ML) routine. However, for large d and
moderate sample sizes, the likelihood is highly unstable, Hessians
are near singular, estimates are inaccurate, and global convergence
is hard to achieve.
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One solution is to use copulas which have tighter parameter-
izations. However, the functional form of such copulas limits the
nature of dependence they can accommodate (Nelsen, 2006, Sec-
tion 4.6). Another solution is to use ‘vine copulas’ (Aas et al., 2009)
when the d-variate density is decomposed into a product of up
to d(d − 1)/2 bivariate densities. However, there are still O(d2)
parameters in the joint likelihood; in addition, the required or-
dering of components is rarely available, especially in the time
series context. Yet another alternative is to use the factor copula
approach (Oh and Patton, 2013). However, the joint density ob-
tained lacks a closed form; in addition, it is unclear whether the
convolution of distributions imposed by the factor copula covers
all classes of joint distributions one may wish to model.

The proposed method replaces the initial estimation problem
with a sequence of bivariate problems. The procedure can
be thought of as recovering the joint distribution from the
distributions of all lower-dimensional sub-vectors comprising the
original random vector. This provides sufficient flexibility as there
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are more degrees of freedom in choosing a parameterization in
each step. The proposed estimator can be viewed as a traditional
pseudo maximum likelihood estimator, but it is more flexible
and works reasonably well in situations when the traditional ML
fails.

2. The algorithm

In this sectionwe describe the proposed algorithm, while in the
next section we discuss its asymptotic properties.

Step 1. Estimate the marginals by fitting a suitable parametric
distributionFj = F(θj) for each j = 1, . . . , d. This step involves d
estimation problems.

Step 2. Using the Fj’s, estimate a bivariate distribution Fij =

C (2)(Fi,Fj;θij) for each pair (i, j), where C (2) denotes a bivariate
copula. There are d(d − 1) estimation problems in this step.

Step 3. Using theFj’s andFij’s, estimate a trivariate distribution
C (3)(Fi,Fjk;θijk), for each combination of i and (j, k), where C (3) is
a suitable compounding function capturing dependence between
each element i and each disjoint pair (j, k). There are d(d− 1)(d−

2)/2 such combinations. Now, average (Fi,Fjk) over permutations
of (i, j, k):

Fijk =
C (3)

Fi,Fjk;θijk + C (3)
Fj,Fik;θjik + C (3)

Fk,Fij;θkij
3

.

Step m. Using the Fj’s and Fi1,...,j−1,j+1,...,im , estimate an m-
dimensional distribution of each m-tuple. There are d!/(d − m)!
(m−1)! possible combinations ofFi’s with disjoint (m−1)-variate
marginals. Let i1 < i2 < · · · < im, then obtain a model average
estimate of the distribution for the (i1, i2, . . . , im)-thm-tuple:

Fi1i2...im =
1
m

m
l=1

C (m)
Fl,Fi1,...,l−1,l+1,...,im;θl,i1,...,l−1,l+1,...,im


,

where C (m) is anm-th order compounding function which is set to
be a suitable asymmetric bivariate copula.

Step d. Estimate the d-variate distribution:

F12...d =
1
d

d
l=1

C (d)
Fl,F1,...,l−1,l+1,...,d;θl,1,...,l−1,l+1,...,d


,

where C (d) is a d-th order compounding function. There are d such
functions to be estimated.

3. Asymptotic properties

Letθ contain all θ̂ ’s from Steps 1 to d. Then, by the Sklar (1959)
theorem, the distribution F12...d(x1, . . . , xd) implies a d-copula
K(u1, . . . , ud;θ) and the corresponding estimator of densityf12...d(x1, . . . , xd) implies ad-copula density k(u1, . . . , ud;θ).1 There
is no guarantee that the m-th order compounding functions are
also m-copulas, m = 3, . . . , d, unless we use a compatible cop-
ula family.2 However, the resulting estimator F12...d is a continu-
ous, non-decreasing, bounded d-variate function with range [0, 1],
which is a distribution and thus implies a d-copula. The following

1 We denote the implied copula distribution and density functions by K and k,
respectively, to distinguish them from the true copula distribution C(u1, . . . , ud)

and true copula density c(u1, . . . , ud).
2 There are several impossibility results concerning construction of high

dimensional copulas by using lower dimensional copulas as argument of bivariate
copulas (Quesada-Molina and Rodriguez-Lallena, 1994).

result gives explicit formulas for the copula (density) implied by
our estimator.

Proposition 1. LetF−1
m (um),m = 1, . . . , d, denote the inverse of the

marginal cdf Fm from Step 1 and letfm denote the pdf corresponding
toFm. Then, the copula implied byF12...d can be written as follows:

K(u1, . . . , ud;θ) = F12...d(F−1
1 (u1), . . . ,F−1

d (ud)),

k(u1, . . . , ud;θ) =

f12...d(F−1
1 (u1), . . . ,F−1

d (ud))

d
m=1

fm(F−1
m (um))

.

It is clear from Proposition 1 that our algorithm provides an
estimate of a flexible parametric d-variate pseudo-copula.3 So
the asymptotic properties of our estimator are basically the
well-studied properties of copula-based pseudo- or quasi-ML
estimator (Joe, 2005; Prokhorov and Schmidt, 2009). The following
proposition summarizes these results, without proof.

Proposition 2. Asymptotically the estimator θ minimizes the Kull-
back–Leibler divergence criterion,

θ p
→ argmin

θ
E ln

c(u1, . . . , ud)

k(u1, . . . , ud; θ)
,

where c is the true copula density and expectation is with respect
to the true distribution. Furthermore, under standard regularity
conditions, θ is consistent and asymptotically normal. If the true
copula belongs to the family k(u1, . . . , ud; θ), it is consistent for the
true value of θ. If the copula family is misspecified, the convergence
is to a pseudo-true value of θ, which minimizes the Kullback–Leibler
distance.

Fundamentally, our algorithm uses the following form of the
joint distribution:

H(x1, . . . , xd) = C (d)(Fd(xd), C (d−1)(Fd−1(xd−1), . . .)),

wheremarginals are ordered in an arbitrary way. For example, C (3)
can be formed as C (3)


F1, C (2)(F2, F3)


, or as C (3)


F2, C (2)(F1, F3)


,

etc. Since no single ordering is preferredwe applymodel averaging
to combine them. This is a central question in the literature on
combining multiple prediction densities (Geweke and Amisano,
2011), where optimal weights, also known as scoring rules, are
worked out in the context of information theory. As an example,
define c(3)j as c(3)j ≡ c(3)(Fj, C

(2)
k ), where j, k = 1, 2, 3, j ≠ k and

C (2)k ≡ C (2)(Fk, Fl), l ≠ k, l ≠ j. Then, it is possible in principle
to obtain the optimal weights ωj’s as solutions to the following
problem:

max
ωl:


ωj=1


sample

ln


j

ωjc
(3)
j .

Such scoring rules make ωj’s a function of c(3)j ’s and may be worth
pursuing in large samples. However, it has been noted in this
literature that, in finite samples, a simple average often performs
better due to the error from estimating ω’s (Stock and Watson,
2004).Moreover, in our setting, the optimalweightswould need to
be solved for in each step, imposing a heavy computational burden.

3 Here by pseudo-copula we mean a possibly misspecified copula function. The
same term is sometimes used in reference to the empirical copula obtained using
univariate empirical cdf’s.
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