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h i g h l i g h t s

• A new factor analytical method to estimate fixed-effects dynamic panel data models is considered.
• The method is proposed by Bai (2013a) and it has the feature that it is asymptotically bias free.
• We provide Monte Carlo evidence of the good small-sample performance of this method.
• Our results thus complement Bai’s theoretical study.
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a b s t r a c t

In a recent article Bai (2013a) proposes a new factor analytical method (FAM) for the estimation of fixed-
effects dynamic panel datamodels, which has the unique and very useful property that it is asymptotically
bias free. In this paper we provide Monte Carlo evidence of the good small-sample performance of FAM,
that complement Bai’s theoretical study.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the within-groups (WG) estimator of the
autoregressive coefficient in dynamic panel data models is subject
to an incidental parameter bias, typically referred to as the ‘‘Nickell
bias’’. This bias, which occurs because the number of fixed-effects
parameters grows without bound, is of order 1/T , indicating that
the WG estimator is inconsistent in panels where T is small even
if N goes to infinity (see, for example Baltagi, 2008). This problem
has led to increased interest in generalized method of moments
(GMM), see Baltagi (2008) for an overview of this literature. How-
ever, although estimation methods based on GMM will success-
fully remove the incidental parameter bias, they are instead biased
of the order 1/N . This means that they are inconsistent in panels
where N is small even if T goes to infinity (see Alvarez and Arel-
lano, 2003). GMM approaches are also known to suffer from prob-
lems of small-sample inefficiency (see, for example Kiviet, 1995),
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andweak instrumentation (see Roodman, 2009). Another possibil-
ity is to use bias correction methods, which have the advantage of
not being reliant on instrumental variables (see, for example Kiviet,
1995; Hahn and Kuersteiner, 2002). These methods are, however,
still biased in panels where T is small due to the approximation
error in the asymptotic bias term. To the best of our knowledge,
FAM is the only existing estimationmethod for dynamic panel data
models that is bias free under a wide range of conditions (see, for
example Moon et al., forthcoming).

In a recent paper, Bai (2013a,b) proposes a factor analytical
method (FAM) to estimate fixed-effects dynamic panel data mod-
els. One of themain features of this method is that there is no need
for consistent estimation of the fixed-effects themselves but only
their variance, which means that with this approach there is no
‘‘Nickell bias’’. Indeed, as Bai (2013a,b) shows one can even allow
for heteroscedasticity and still there is no bias. In contrast to other
approaches, FAM therefore allows for asymptotically unbiased in-
ference regardless of whether the incidental parameters are in the
mean or in the variance. Of course, as iswell known, asymptotic re-
sults need not provide accurate approximations in small samples.
Thus, while certainly very promising, the usefulness of FAM from
an applied point of view is yet to be proven since its small-sample
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properties are still unknown. The aim of the present paper is to fill
this gap in the literature.

2. FAM

The data generating process (DGP) considered in the present
paper is the same as in Bai (2013a), and is given by
yit = ρyit−1 + µi + δt + εit , (1)
where i = 1, . . . ,N, t = 1, . . . , T , µi and δt are individual- and
time-specific fixed-effects, respectively, y10 = · · · = yN0 = 0,
|ρ| < 1, and εit is an error term that is assumed to be indepen-
dently distributed with E(εit) = 0, E(ε2

it) = σ 2
t > 0 and E(ε4

it) <

∞. It is further assumed that Sµ = (N − 1)−1 N
i=1(µi − µ̄)2 > 0,

where µ̄ = N−1 N
i=1 µi. Eq. (1) can be written in a matrix form as

yi = Γ 1Tµi + Γ δ + Γ εi, (2)
where yi = (yi1, . . . , yiT )′, εi = (εi1, . . . , εiT )

′, δ = (δ1, . . . , δT )
′

and 1T = (1, . . . , 1)′ are all T × 1 vectors. The matrix Γ is T × T
and is given by

Γ =


1 0 0 . . . 0
ρ 1 0 . . . 0
ρ2 ρ 1 . . . 0
...

. . .
. . .

. . .
...

ρT−1 . . . ρ2 ρ 1

 .

The sample covariance matrix of yi is given by Sy = (N − 1)−1N
i=1(yi − ȳ)(yi − ȳ)′, where ȳ = N−1 N

i=1 yi. Under the above
assumptions, it can be shown that

E(Sy) = Σ(θ) = Γ (1T1′

T Sµ + Ψ )Γ ′, (3)

where Ψ = diag(σ 2
1 , . . . , σ 2

T ) and θ = (Sµ, ρ, σ 2
1 , . . . , σ 2

T )′ is
the vector containing the parameters of interest. The model in (2)
can be seen as a common factor model with factor loading Γ 1T
and score µi, suggesting that the estimation can be carried out us-
ing methods designed for such models (see, for example Anderson
and Amemiya, 1988). FAM is based on quasi-maximum likelihood
whereby θ is estimated by minimizing the following ‘‘discrepancy
function’’

Q (θ) = log(|Σ(θ)|) + tr (SyΣ(θ)−1). (4)
Denote by ρ̂ the resulting estimator ofρ. As Bai (2013a, Theorem1)
shows, as N, T → ∞ with NT−3

→ 0,
√
NT (ρ̂ − ρ) →d N(0, γ −1), (5)

where →d signifies convergence in distribution and γ = limT→∞

T−1 T
t=2 σ−2

t (σ 2
t−1 + ρ2σ 2

t−2 + · · · + ρ2(t−2)σ 2
1 ).1 Hence, under

the above conditions, there is no asymptotic bias and the estima-
tor is asymptotically efficient. Moreover, the condition NT−3

→ 0
is not necessary if we are only concerned with consistency (this
condition is only imposed to ensure a simple form for the limiting
distribution). In fact, consistency only requires N → ∞.

Remark 1. Note that θ only contains Sµ, not µ1, . . . , µN , and also
how the time-specific fixed-effects are removed by subtracting ȳ
in Sy. This means that the incidental parameter problem caused by
the growing dimension of θ does not arise. The way in which the
incidental parameter problem is treated in FAM is therefore very
different from the conventional approach of either performing the
within transformation or by taking first differences. Of course, the
dimension of θ is still growing in T ; however, the estimation of
σ 2
1 , . . . , σ 2

T does not affect the consistency of ρ̂ (see Bai, 2013a, for
an explanation).

1 Under homoscedasticity, γ = (1 − ρ2)−1 (see Bai, 2013b, Theorem S.2).

Remark 2. While under the above assumptions εit is homoskedas-
tic in i, this is not necessary. If εit is heteroskedastic in both i and t ,
then the estimation can proceed in exactly the same way as in the
above, but thenσ 2

1 , . . . , σ 2
T only capture the average variances over

cross-sections (and not the variances themselves). This removes
the incidental parameter problem, as the dimension of θ does not
depend on N .

3. Monte Carlo results

The DGP used in this section is given by (1) with εit ∼ N(0, σ 2
it ),

µi ∼ U(1, 2) and ρ ∈ {0, 0.5, 0.95}. We run four distinct experi-
ments2:
A. σ 2

it = 1, δt = 0;
B. σ 2

it = 1 if i < ⌊N/2⌋ and σ 2
it = 2 otherwise, δt = 0;

C. σ 2
it = 1 if t < ⌊T/2⌋ and σ 2

it = 1/3 otherwise, δt = 0;
D. σ 2

it = 1, δt ∼ U(1, 2).

In experiment A εit is homoscedastic, whereas in experiments
B and C heteroscedasticity is permitted by allowing for two dis-
tinct variance regimes. In experiments A–C the time-specific ef-
fects are absent, while in experiment D this is no longer the case.
In each experiment the data are generated for 5000 panels with
T ∈ {5, 10, 50} and N ∈ {10, 50, 100}.

The small-sample performance of FAM is compared to the per-
formance of four other estimators (of ρ); WG, the bias-corrected
ordinary least squares (OLS) estimator of Hahn and Kuersteiner
(2002), the Anderson and Hsiao (1981) instrumental variables (IV)
estimator using lagged levels as instruments,3 and the GMM esti-
mator of Arellano and Bond (1991), where the last three are hence-
forth denoted by bcOLS, AHl and abGMM, respectively. A large
number of results were produced, but due to space constraints we
focus here on the bias and root mean squared error (RMSE). Esti-
mation using abGMM is computationally intensive, so for this es-
timator we only report results for the case when T = 5.

The results for experiment A are presented in Table 1. We see
that the bias of FAM is close to zero for all the sample sizes con-
sidered. In fact, in terms of bias FAM outperforms the other es-
timators. We also see that the bias becomes smaller in absolute
value as T and N increases, a finding that is in line with the

√
NT -

consistency of FAM (irrespective of the relative rate of expansion
of N and T ). As expected, with T fixed, WG is seriously biased and
there is no improvement as N increases. abGMM is also notice-
able biased when N is small; however, the performance improves
as N increases. Similarly, although severely biased when N and T
are small, the performance of bcOLS improves when T increases.
We also see that the performance of bcOLS is much worse when
ρ = 0.95 than for ρ = 0.5 or ρ = 0, which is in agreement with
the findings in the previous literature. The performance of AHl is
quite good and is only dominated by that of FAM.

FAM is superior, not only in terms of bias, but also in terms of
RMSE. The RMSE of FAM is decreasing in both T andN . The fact that
RMSE is also decreasing in ρ is in agreement with the theoretical
result that the asymptotic variance of FAM is inversely related to
the absolute value of ρ. One can also observe, that except for the
case when ρ = 0.95, the RMSE of bcOLS and FAM are quite com-
parable, which is consistent with the fact that the both estimators
are asymptotically efficient. The results provided in Table 1 further
suggest that the least efficient estimator is AHl, which exhibits the
highest RMSE.

2 All computational work is performed in GAUSS 11 and the BFGS algorithm is
used for constrained optimization with non-negativity constraints imposed on the
variance parameters.
3 Weuse level rather than first-differenced instruments, as the IV estimator based

on the latter instruments has a singularity point and exhibits high variance over a
wide range of parameter values (see Arellano, 1989).
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