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h i g h l i g h t s

• We propose a nonlinear scoring function to evaluate all the bids.
• The components of the bids are transformed into comparable ones.
• We characterize the equilibrium bidding strategy.
• The equilibrium quality improves as the number of bidders increases.
• The equilibrium price decreases as the number of bidders increases.
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a b s t r a c t

This article proposes a nonlinear scoring rule which transforms multiple attributes of a bid into
comparable dimensionless ones. Practically, the buyer canuse it to select themost competitivewinner. For
risk-neutral bidders, we characterize a symmetric Bayes–Nash equilibrium and find that as the number
of bidders increases the equilibrium quality improves, whereas the equilibrium price decreases.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Themulti-attribute auctionwas evermentioned byMcAfee and
McMillan (1987) and examined by Thiel (1988) using consumer
theory. The seminal paper byChe (1993) among themulti-attribute
auction literature systematically analyzed bidding behavior with
the standard methodology on price-only auctions. In Che’s model,
a bid contains two dimensions of price and quality: each bidder’s
type is unidimensional, and suppliers’ cost functions are indepen-
dent of each other. Branco (1997) extendedChe’s independent-cost
model to the correlated-cost case, David et al. (2006) andNishinura
(2012) generalized Che’s work from one non-price attribute (qual-
ity) to a number of such attributes, and Asker and Cantillon (2008,
2010) considered a procurement auction where each bidder’s type
is multidimensional. With unidimensional type parameter, Hana-
zonoy et al. (2012) extended the approach by Che (1993) and Asker
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and Cantillon (2008) by taking the quality offered and the sup-
plier’s cost as endogenous. In this article, the model described is
similar to Che’s first-score case: ex ante symmetric, risk neutral
bidders have a cost function which is parameterized via a unidi-
mensional type and submit their two-dimensional bids of price and
quality.

To select a winner, Che (1993), Branco (1997), David et al.
(2006), Asker and Cantillon (2008) and Nishinura (2012) used
the quasilinear scoring rule that is linear in price,1while Hana-
zonoy et al. (2012) mapped the multidimensional bid onto the
unidimensional score according to the more realistic price–quality
ratio scoring rule. Practically, the unit of price is different from that
of quality, and sometimes, quality cannot be evaluated by equiva-
lent money. Even if quality can be monetized, when the value of

1 The scoring rule in Che (1993) is assumed to be S(p, q) = s(q) − p, where p is
the price and q is the quality. In Branco (1997), it equals S(t, q) = V (q) − (1 + λ)t ,
where t is the bidder’s expected payment and q is the quality. In Asker and Cantillon
(2008) and Nishinura (2012), it is similar to Che (1993). In David et al. (2006), it is
S(p, q1, . . . , qm) = −p +

m
j=1 ωj

√
qj , where p is the price, qj is the quality and ωj

is the weight assigned to quality j, j = 1, 2, . . . ,m.

http://dx.doi.org/10.1016/j.econlet.2014.03.021
0165-1765/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.econlet.2014.03.021
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2014.03.021&domain=pdf
mailto:slliu@uibe.edu.cn
http://dx.doi.org/10.1016/j.econlet.2014.03.021


M. Wang, S. Liu / Economics Letters 123 (2014) 352–355 353

price is a thousand times of the value of quality, the quality has
little contribution to the score of a bid. Thus, the quasilinear scoring
rule weakens bidders’ efforts in quality attributes. As long as two
bids have the same price, they have almost the same score. At the
moment, a multi-attribute auction reduces to a price-only auction
since the winner is almost determined by the price. In this article,
we propose a new scoring rule that is nonlinear in price. Compared
with the quasilinear scoring rule, our scoring rule not only elimi-
nates the problem caused by different units of price and quality,
but also transforms different attributes of a bid into comparable
dimensionless ones and further emphasizes on bidders’ effort to
each dimension of the bid.

With the scoring rule being quasilinear, the optimal quality for
awinning bidder is independent of the number of bidders (see, e.g.,
Lemma 1 in Che, 1993, Eq. (13) in Branco, 1997, Lemma 2 in David
et al., 2006, and Lemma 1 in Nishinura, 2012). Thus, having more
rivals does not drive a bidder to offer higher qualities. In contrast,
this article characterizes a symmetric Bayesian Nash equilibrium
which drives every type of a bidder to pledge to supply higher
quality given higher number of bidders. This result could formalize
the intuition that competition may give rise to higher qualities, an
intuition that the relatedwork failed to capture due to its particular
quasilinear scoring rule.

The rest of the paper is organized as follows. Section 2 describes
the model. Section 3 characterizes a symmetric Bayesian Nash
equilibriumwith interior-solution bid and examines its properties.

2. The model

Consider the case of an indivisible contract procurement. The
buyer faces n bidders indexed by i = 1, 2, . . . , n, specifies bidding
attributes consisting of price (p) and quality (q), and announces the
scoring function S(p, q) to bidders. Bidder i then submits a sealed-
bid (pi, qi). To avoid bids of high price and inferior quality, we
assume that the buyer only accepts those bids for which pi must
be less than the highest acceptable bidding price p and qi must be
higher than the lowest acceptable quality q > 0. Each (pi, qi) is
evaluated according to S(p, q). The bidder who scores highest wins
and then sells the good according to the price and quality specified
in her winning bid.

To eliminate computational problems caused by different units
of price and quality and obtain comparable scales, (pi, qi) is
normalized as (p∗

i , q
∗

i ), where p∗

i = p/pi and q∗

i = qi/q. As a result,
each element of (p∗

i , q
∗

i ) has the dimensionless unit, and p∗

i ≥

1, q∗

i ≥ 1. The score for (p∗

i , q
∗

i ) is defined as Si = ω1p∗

i + ω2q∗

i ,
where weights ω1 and ω2 satisfy ω1 + ω2 = 1.

Suppose that bidders’ production efficiency is determined by
the cost parameter θ (type) which is private information. A larger
θ represents a higher efficiency. As in Che (1993), we assume that
θ is independently and identically distributed over [θ, θ ](0 < θ <

θ < +∞), following the distribution function F with density
f > 0. Denote G(·) = F n−1(·) and G′(·) = g(·). Let bidders’ cost
function be c(q; θ). Practically, the higher the production efficiency
is, the lower the cost and marginal cost of quality become, i.e.,
cθ < 0 and cqθ ≤ 0; the higher the quality that is offered, the
higher the production cost is and the lower the marginal cost of
quality is, i.e., cq > 0 and cqq < 0. Assume that p′(θ) < 0 and
q′(θ) > 0.

3. Equilibrium bidding strategy

Based on the type θ , the risk neutral bidders choose bids (p, q)
to maximize their expected profits. Then, we have the following
Theorem 1.

Theorem 1. For risk-neutral bidders, the symmetric Bayes–Nash
equilibrium bidding strategies, (p(θ), q(θ)), with interior-solution

bids are given by2

p(θ) = c(q(θ); θ) −

 θ

θ

cθ (q(x); x)
 F(x)
F(θ)

n−1
dx, (1)

Ac
1
2
q (q(θ); θ) +

 θ

θ

cθ (q(x); x)
 F(x)
F(θ)

n−1
dx

− c(q(θ); θ) = 0, (2)

with the boundary condition of

Ac
1
2
q (q(θ); θ) − c(q(θ); θ) = 0, (3)

where A =


ω1
ω2

pq
 1

2
.

Proof. If bidder 1 with θ bids (p, q) and wins, she obtains a score
S1 = ω1p/p + ω2q/q and earns a profit p − c(q; θ). Her winning
probability is Prob{S(θi) < S1, i = 2, . . . , n} = G(S−1(S1)). Thus,
bidder 1’s objective function can be expressed as

π(p, q; θ) =


p − c(q; θ)


G

S−1


ω1

p
p

+ ω2
q
q


. (4)

Differentiating (4) with respect to p and q, respectively, yields

∂π(p, q; θ)

∂p
= G(S−1(S1))

−[p − c(q; θ)]g(S−1(S1))
1

S ′(S−1(S1))
ω1p
p2

,

∂π(p, q; θ)

∂q
= −cq(q; θ)G(S−1(S1))

+[p − c(q; θ)]g(S−1(S1))
ω2

qS ′(S−1(S1))
.

(5)

At a symmetric Bayes–Nash equilibrium with interior-solution
bids, bidder 1’s optimal choice must be to bid (p(θ), q(θ)) and
(∂π(p, q; θ)/∂p, ∂π(p, q; θ)/∂q)|(p=p(θ),q=q(θ)) = (0, 0). Since
S−1(S1) = θ , it follows from (5) that bidder 1’s bid (p(θ), q(θ))
must satisfy

G(θ) = [p(θ) − c(q(θ); θ)]g(θ)
ω1p

p2(θ)S ′(θ)

cq(q(θ); θ)G(θ) = [p(θ) − c(q(θ); θ)]g(θ)
ω2

qS ′(θ)
.

(6)

From (6), we have

p2(θ) = A2cq(q(θ); θ), (7)

where A =


ω1
ω2

pq
 1

2
. Substituting S ′(θ) = −ω1pp′(θ)/p2(θ) +

ω2q′(θ)/q into the second equation of (6) yields
G(θ)p(θ)

′

= c(q(θ), θ)g(θ) + G(θ)cq(q(θ), θ)q′(θ). (8)

Integrating both sides of (8) with respect to θ over [θ, θ], yields

G(θ)p(θ) = G(θ)p(θ) +

 θ

θ

c(q(x); x)g(x)dx

+

 θ

θ

G(x)cq(q(x); x)q′(x)dx

2 Theremay be an equilibriumwith some corner-solution bidswhere Eqs. (1) and
(2) do not hold.
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