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h i g h l i g h t s

• We propose an estimation method for semiparametric binary response models with nonignorable nonresponses.
• The parameter of interest is partially identifiable without relying on restrictive distributional assumptions.
• Our estimation method, which is based on the special regressor approach, is easy to implement.
• The proposed estimator is consistent in the Hausdorff metric.
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a b s t r a c t

This study investigates the identification of parameters in semiparametric binary response models of the
form y = 1(x′β + v + ε > 0) when there are nonignorable nonresponses. We propose an estimation
procedure for the identified set, the set of parameters that are observationally indistinguishable from the
true value β , based on the special regressor approach of Lewbel (2000). We show that the estimator for
the identified set is consistent in the Hausdorff metric.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the field of survey and interview data analysis, nonresponses
andmissing data are common and often unavoidable. Inmany em-
pirical studies, models are estimated using only a subsample of the
complete data. These results are valid under themissing-at-random
(MAR) assumption, which implies that missing data is ignorable.
However, Manski (2003), for example, points out that such an as-
sumption is untestable, so nonresponses are in general nonignor-
able. Indeed, theMAR assumption does not hold inmany empirical
settings, yielding biased estimates under such an assumption.

In this paper, we consider the estimation of binary response
models with nonignorable missing response data without relying
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on the MAR assumption. Consider the following binary response
model:
y = 1(x′β + v + ε > 0), (1)
where y is a binary outcome, x is a k × 1 vector of observed re-
gressors, β is a k × 1 vector of parameters to be estimated, ε is an
unobserved error term, and v is a scalar random variable whose
coefficient is normalized to 1 for identification. This paper extends
(1) to the case inwhich y is not observable to econometricianswith
a positive probability less than 1. When an individual’s response is
not observable, it is in general impossible to infer whether the ‘‘po-
tential’’ response is 1 or 0. In other words, what we can ‘‘observe’’
is only a random set Y defined by

Y =


{y} if d = 1
{1, 0} if d = 0. (2)

In the equation above, d is an indicator representing the observ-
ability of y. A formal definition of a random set is given in the next
section.
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When it is not credible to assume the MAR assumption, an al-
ternative often used in the literature is a sample selection model
(Heckman, 1979). In order to use such a model, we need to intro-
duce additional structural and distributional assumptions on the
relationship between the observability d, and its explanatory vari-
ables. The parameter estimates are generally not consistent when
these assumptions are not met, but it is often very difficult to ob-
tain a correct model specification. Thus, in this paper, we do not
impose such structural and distributional assumptions on the ob-
servability of response data. In addition, we do not assume any
parametric form for the distribution of the error term ε. Under
this setup, this paper considers estimating the set of all observa-
tionally equivalent values of the parameter β . We call this set the
identified set, and denote it byΘβ . For a semiparametric binary re-
sponsemodel, a straightforward estimator of the identified set,Θβ ,
would be the maximum likelihood estimator. However, applying
themaximum likelihood estimator is often problematic in terms of
computational burden and the assumption that ε is independent
of (x, v). To overcome these problems, this paper suggests using
the method proposed by Lewbel (2000). If there are no missing re-
sponses in the population, i.e., P(d = 0) = 0, and v can be used
as a special regressor, Lewbel (2000) shows that β can be estimated
by a linear regression of [y − 1(v > 0)]/f (v|x) onto x, i.e.,

β = E(xx′)−1E

x
y − 1(v > 0)

f (v|x)


. (3)

At the cost of assuming the existence of a special regressor, un-
like the other estimators of semiparametric binary response mod-
els proposed by, for example, Klein and Spady (1993) and Ichimura
(1993), the estimator in (3) does not require restrictive conditions
on the error term such as statistical independence or single-index
sufficiency. In addition, by utilizing the special regressor approach,
the computation of the identified set Θβ can be greatly simplified
as compared with use of the maximum likelihood estimator.2

The remainder of this paper is organized as follows. In Sections 2
and 3, we describe the estimation and inference procedure for our
model, respectively. In Section 4, we propose a method to deter-
mine the sign of the coefficient of the special regressor when it
is not known a priori. In Section 5, we introduce an assumption
called the stigma-affecting response, which is reasonable to assume
in some empirical situations, and can improve the bound. Finally,
in Section 6, we present the conclusion.

2. Consistent estimation of the identified set

First, let us introduce the following assumptions.

Assumption A. 1. The conditional distribution of v given x is
absolutely continuous with respect to a Lebesgue measure with
nondegenerate Radon–Nikodym conditional density f (v|x). 2. The
conditional distribution of ε given x is independent of v for all (v, x)
∈ supp(v, x). 3. (a) The conditional distribution of v given x has a
support [L,U] for some constants L and U such that −∞ ≤ L <
0 < U ≤ ∞; and (b) supp(−x′β − ε) ⊆ [L,U]. 4. (a) E(xε) = 0;
and (b) E(xx′) exists and is nonsingular.

Assumption A1–3 characterize the special regressor v. The
conditional independence condition in A2 ismuchweaker than the
statistical independence condition. The large support condition in
A3 implies that the probability of observing y = 1 approaches

2 This paper is not the first to investigate identification and estimation in
incomplete binary response models based on the special regressor approach.
Magnac and Maurin (2008) consider a binary response model in which the special
regressor v is either discrete or measured within intervals.

0 (1) if v becomes sufficiently small (large). This condition can
be relaxed by replacing it with the tail symmetry condition (for
details, seeMagnac andMaurin, 2007). Assumption A4(a) excludes
the case where x is endogenous. If a set of suitable instrumental
variables exists such that E(zε) = 0, this condition can be relaxed.

Now, we consider the partial identification of the parameters.
Let us introduce some terms and their definitions in the field of
random set theory (for a comprehensive review, see, e.g., Li et al.,
2010, Molchanov, 2005). Random set theory provides very useful
tools to analyze a certain class of partially identified models, as
in Beresteanu and Molinari (2008) and Beresteanu et al. (2012).
Let (Ω, A, µ) be a probability space. Throughout this paper, we
assume that the probability space is nonatomic. Let K(Rk) be the
family of all nonempty closed subsets of Rk.

Definition 1 (Random Set). A set-valued mapping F : Ω → K(Rk)
is called a random set if, for each open subset O in Rk, F−1(O) :=

{ω ∈ Ω : F(ω) ∩ O ≠ ∅} ∈ A.3

Definition 2 (Selection). An Rk-valued function f : Ω → Rk is
called a selection for a random set F : Ω → K(Rk) if f (ω) ∈ F(ω)
for all ω ∈ Ω .

LetS(F)be a selection set in L1[Ω; Rk
] for a randomset F , where

L1[Ω; Rk
] is the space of measurable functions f : Ω → Rk such

that


Ω
|f |dµ is finite, i.e., S(F) := {f ∈ L1[Ω; Rk

] : f (ω) ∈

F(ω) for all ω ∈ Ω}.

Definition 3 (Aumann Integral of a Random Set). For each random
set F , the Aumann integral of F , denoted by E(F), is defined by
E(F) =


Ω
f dµ : f ∈ S(F)


.

Assumption B. 1. The random variables (Y , v, x) are defined on
a nonatomic probability space (Ω, A, µ). 2. Any y∗

∈ S(Y ) is
admissible for the true y. 3. Let

yU =


y if d = 1
1 if d = 0 and yL =


y if d = 1
0 if d = 0.

xj
yU−1(v>0)

f (v|x) and xj
yL−1(v>0)

f (v|x) , j = 1, . . . , k, are random variables in
L1[Ω; R].

The nonatomicity Assumption B1 is introduced in order to sim-
plify the estimation of the identified set, and it is not too restrictive
because the appropriate probability space for a sequence of i.i.d.
random elements is nonatomic (see Beresteanu et al., 2012). As-
sumption B2 excludes the case, for example, inwhich supp(−x′β−

ε) is known to researchers. If it were known and the observed
value of v were larger (smaller) than its upper (lower) boundary,
we could set y to 1 (0) regardless of the observability of y, yielding
a smaller admissible set than S(Y ). Define

G(ω) := x(ω)Y ∗(ω), where Y ∗(ω) :=
Y − 1(v > 0)

f (v|x)
(ω).

Now, we characterize the population-identified set Θβ as follows.

Proposition 1. Suppose that Assumptions A and B hold. Then, the
identified set for β is given by

Θβ = E(xx′)−1E(G). (4)

Further, the set in (4) is equivalent to

E(xx′)−1E(coG), (5)

where, for a set A, coA is a convex hull of A.

3 In general, we can consider a mapping F : Ω → K(X) with X being a general
metric space. For the purpose of this study, it suffices to consider the case where
X = Rk .
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