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• We focus on semiparametric regression with endogeneity.
• Our estimator is simple to implement.
• Our estimator performs well in finite samples.
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a b s t r a c t

We propose a simple kernel estimator for semiparametric partial linear models with endogeneity in the
nonparametric function. Compared to the existing backfitting estimator, our estimator is notationally
simpler and relatively easier to implement. We also discuss data-driven bandwidth selection to
implement this estimator in practice. Monte Carlo exercises show that the finite sample performance
of these two estimators is similar.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, researchers have considered variants of the nonpara-
metric triangular system of equations setup rigorously studied by
Newey et al. (1999). In particular, Su and Ullah (2008) propose a
kernel regression estimator for the fully nonparametric specifica-
tion in Newey et al. (1999) while Martins-Filho and Yao (2012)
consider a kernel regression estimator for a semiparametric partial
linear variant of the same specification.2 The result has been the
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conditional moment restrictions to Newey et al. (1999). For similar models,

development of practical tools that applied researchers can deploy
in a straightforward fashion.

In this paper, we focus on estimation ofm(·) and β in the partial
linear specification

Yi = m(X1i) + X2iβ + εi (1)

in which Yi is a scalar outcome variable, X1i and X2i are d1-
and d2-dimensioned vectors of conditioning variables, m(·) :

Rd1 → R is a smooth function of X1i, β is a d2-dimensioned
vector of parameters, εi is a scalar disturbance term, and the index
i = 1, 2, . . . , n denotes the sample. Further assume that for any
variable in X1,

X1i = g(Zi) + Ui (2)

for a p-dimensioned vector of variables Zi, some smooth function
g(·) : Rp

→ R, and scalar disturbance Ui. We follow Newey

albeit with differences in assumed conditional moment restrictions that are not
necessarily more or less general than those considered here, see, for example, Ai
and Chen (2003) and Otsu (2011).
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et al. (1999) and Martins-Filho and Yao (2012) and impose the
conditional moment restrictions E[εi|X1i] ≠ 0, E[Ui|Zi] = 0, and
E[εi|Zi,Ui] = E[εi|Ui], so that X1i is endogenous and Zi serves as a
proper instrumental variable.

Given the partial linear restriction on (1), our specification
is similar to the model considered by Martins-Filho and Yao
(2012) and is the well-known specification made famous by
Robinson (1988). Our discussion herewill focus on the existence of
endogeneity in the nonparametric function, and not in the linear
component X2i as well. In the event that X1i is correlated with
εi, standard estimation approaches (e.g., Robinson, 1988) cannot
yield consistent estimates without modification. See, for example,
Li and Stengos (1996) for an estimator of a partial linearmodelwith
endogeneity in the parametric part.

Martins-Filho and Yao (2012) propose using a control function
approach (Newey et al., 1999; Su and Ullah, 2008) to eliminate the
endogeneity in (1), followed by a backfitting estimator to estimate
m(·) and β . They choose not to deploy a marginal integration
estimator (e.g., Su andUllah, 2008) in order to obtainmore efficient
estimates (Kim et al., 1999). Monte Carlo exercises demonstrate
that their estimation approach performs well in finite samples.
Further, the marginal integration estimator of, for example, Su and
Ullah (2008) is unnecessary here ifwewere to assume a parametric
form for g(Zi) in (2), as demonstrated in Blundell and Duncan
(1998).

While it is clear that the Martins-Filho and Yao (2012)
backfitting estimator is theoretically superior to a marginal
integration approach, we contend that their approach may be
somewhat cumbersome for applied researchers to implement
given the relative notational complexity and iterative steps
required to estimate m(·) and β . Further, while the backfitting
approach requires less computational time, recent advances in
parallel computing render computational time less of an obstacle
for applied work (Delgado and Parmeter, 2013). The purpose of
this research is to study the relative finite sample performance
of both the marginal integration approach (described below) and
the Martins-Filho and Yao (2012) approach. In our view, the
marginal integration approach is relatively simpler both in terms
of notational burden and implementation, and may be more
accessible for applied researchers. Hence, we seek an assessment
of the relative finite sample performance of both estimators. We
further provide a discussion of data-driven bandwidth selection
for our estimator, as data-driven methods are usually considered
necessary in applied settings (Li and Racine, 2007).

We highlight that Model (1) is a popular choice for applied
econometricians who seek to incorporate flexibility into their
regression specification while avoiding dimensionality issues
common in fully nonparametric specifications. Currently, the
basic partial linear specification (without endogeneity) has been
applied in the context of economic growth (e.g., Liu and Stengos,
1999), environmental economics (e.g., Millimet et al., 2003), and
consumer demand (e.g., Blundell et al., 1998).

2. Estimation strategy

2.1. Estimator

Here we describe the marginal integration approach for
estimating (1).We refer the reader toMartins-Filho and Yao (2012)
for a derivation of the backfitting approach. Following Newey et al.
(1999), Su and Ullah (2008) and Martins-Filho and Yao (2012),
under the conditional moment restrictions assumed above and
using the Law of Iterated Expectations:

E[Yi|X1i, X2i, Zi,Ui] = m(X1i) + X2iβ + E[εi|Ui]. (3)

This implies a model of the form

Yi = m(X1i) + X2iβ + E[εi|Ui] + υi (4)

in which υi is defined to be purely random error: υi = Yi −

E[Yi|X1i, X2i, Zi,Ui]. The insight from past research (e.g., Newey
et al., 1999) is to define E[εi|Ui] = h(Ui) for some function h(·) :

Rd1 → R, and replace the unknown Ui with an estimate from the
reduced form regression of X1i on Zi : Ui = X1i −g(Zi). The model
then becomes

Yi = m(X1i) + X2iβ + h(Ui) + υi. (5)

Our proposed estimator is as follows. First, reformulate the
model as

Yi = m0(X1i,Ui) + X2iβ + υi (6)

and then apply the conditional mean transformation of Robinson
(1988) to recover estimates of m0(·) and β . It is possible to
apply the Robinson (1988) estimator to (6) but not (1) given the
presence ofUi that controls for the endogeneity of X1i. That is, using
a nonparametric estimator, obtain estimates of E[Yi|X1i,Ui] and
E[X2i|X1i,Ui] and construct the model

Y ⋆
i = X⋆

2iβ + υ⋆
i (7)

in which Y ⋆
i = Yi − E[Yi|X1i,Ui], X⋆

2i = X2i − E[X2i|X1i,Ui], and
υ⋆
i = υi − E[υi|X1i,Ui]. Ordinary least squares can be used to

regress Y ⋆
i on X⋆

2i to recover an estimate of β , which can then be
used to constructYi = m0(X1i,Ui) +υi (8)

in whichYi = Yi − X2iβ . A nonparametric estimator can be used to
obtain an estimate ofm0(·), from which we recover an estimate of
m(·) via marginal integration

m(X1i) = n−1
n

j=1

m0(X1i,Uj). (9)

This final step, in particular, lends easily to recent advances
in parallel computing accessible to most applied researchers
(Delgado and Parmeter, 2013). Further, Henderson and Parmeter
(2014) show that one need not integrate over the entire sample
to obtain reliable estimates of m(·).3 Throughout, we advocate
using a local-linear least-squares estimator to estimate unknown
conditional means.

2.2. Bandwidth selection

We advocate the use of data-driven methods to recover the
bandwidths to estimate all nonparametric functionals in this
procedure, including both g(Zi) and m(X1i). An obvious choice
in this endeavor is least-squares cross-validation (Li and Racine,
2007). Our cross-validation criterion function is:

min
h2

n
i=1

[yi − m−i(X1i)]2 , (10)

where m−i(X1i) is the leave-one-out estimator of m(X1i), and h2
is the vector of bandwidths used to construct m−i(X1i). Note
that the bandwidths h1 used to construct Ui via ĝ(Zi) in (2)
are also calculated in this procedure, however, as noted in Su
and Ullah (2008), these bandwidths do not effect the asymptotic
performance of m(X1).

3 In particular, Henderson and Parmeter (2014) show that using roughly 25% of
the overall sample produces estimates with almost identical bias and variance as
that using the full sample.
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