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h i g h l i g h t s

• Learning algorithms are assumed to represent agents learning-to-forecast behavior.
• Main algorithms in the literature: Least Squares (LS) and Stochastic Gradient (SG).
• We compare the forecasts associated with the LS and the SG algorithms.
• We use US real-time data on inflation and output growth.
• Our results favor the use of the Least Squares algorithm as representative.
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a b s t r a c t

We compare forecasts from different adaptive learning algorithms and calibrations applied to US real-
time data on inflation and growth. We find that the Least Squares with constant gains adjusted to match
(past) survey forecasts provides the best overall performance both in terms of forecasting accuracy and
in matching (future) survey forecasts.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive learning algorithms have been proposed to provide
an alternative to, and a justification for, rational expectations (RE)
equilibria in macroeconomics (Evans and Honkapohja, 2001). Go-
ing beyond the RE hypothesis, however, comes at the cost of in-
troducing another degree of freedom inmacroeconomicmodeling,
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since one has to be specific about which algorithm is assumed to
represent agents behavior.

The usual choice for this purpose has been the Least Squares
(LS) algorithm (Branch and Evans, 2006; Markiewicz and Pick,
2014), possibly due to its widespread popularity between econo-
metricians. A computationally simpler alternative is offered by the
Stochastic Gradient (SG) algorithm (Barucci and Landi, 1997; Evans
and Honkapohja, 1998). We argue that the previous literature has
neglected the need of a realistic justification in the choice of the
representative learning algorithm.

Importantly, theoretical analyses of learning convergence have
shown that these learning algorithms may lead to different learn-
ability conditions of RE equilibria (Heinemann, 2000;Giannitsarou,
2005). The LS dominance also has been challenged in previous
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applied studies (see Bullard and Eusepi, 2005; Carceles-Poveda and
Giannitsarou, 2007). Hence, it remains open the question of which
algorithm should be taken as representative from an empirical
standpoint. Our main contribution is therefore an attempt to fill
that gap, andwe do this by comparing the quality and fit to surveys
of the forecasts associated with each of these learning algorithms.

We estimate Vector Autoregressions (VARs) recursively with
real-time quarterly data on US inflation and output growth, and
then compare the associated multi-horizon forecasts over an
evaluation sample from 1981q1 to 2011q4. Details of our approach
are presented in Section 2. Our results, presented in Section 3, are
favorable to the use of the LS as representative of agents learning-
to-forecast behavior for the growth variable, whereas for inflation
we obtained mixed evidence depending on the calibration of the
learning gains. Namely, the LS dominance is weakened when the
learning gains are calibrated so as to minimize observed squared
forecasting errors rather than their distance to survey forecasts.We
discuss these results in Section 4.

2. Approach

Our approach is based on learning-to-forecast exercises that
mimic the real-time environment faced by an economic agent
when forming expectations on inflation (πt ) and output growth
(gt ). We assume that this agent attempts to construct inferences
about these variables estimating a VAR of the form

yi,t = x′

tθi,t + εi,t , (1)

where y1,t = πt and y2,t = gt , xt = (1, πt−1, . . . , πt−p, gt−1, . . . ,

gt−p)
′, θi,t =


θ0,i,t , θ1,i,t , . . . , θp,i,t , θp+1,i,t , . . . , θ2p,i,t

′, p denotes
the VAR lag order, and εi,t is a white noise disturbance. To estimate
each equation’s vector of coefficients, θi,t , we follow the adaptive
learning literature and adopt the LS and the SG specifications.

Algorithm 1 (LS). Under the estimation context of (1), the LS
algorithm assumes the form of

θ̂
LS
i,t = θ̂

LS
i,t−1 + γtR−1
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
, (2)

Rt = Rt−1 + γt

xtx′

t − Rt−1

, (3)

where γt is a learning gain parameter, andRt stands for an estimate
of regressors matrix of second moments, E


xtx′

t


.

Algorithm 2 (SG). Under the estimation context of (1), the SG
algorithm is given by
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i,t = θ̂
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i,t−1 + µtxt


yi,t − x′

t θ̂
SG
i,t−1


, (4)

with µt standing for the learning gain parameter.

We then use the LS and the SG algorithms to obtain recursive
estimates of the parameters of VAR model specifications (1–4 lag
orders) applied to real-time quarterly data on US real GNP/GDP
and its price index from 1947q2 to 2011q4. Our data on these
series come from the Philadelphia’s Fed Real-Time Data Research
Center and consist of vintages from 1966q1 to 2012q1, i.e., a total
of 185 snapshots of what was known on these variables by a
market participant in real-time (see Stark and Croushore, 2002).
For the purpose of comparing the algorithms’ forecasts to those
provided by survey respondents, we use data from the Survey
of Professional Forecasters (SPF). Here we use the median of the
individual forecasts made for a total of five horizons, namely from
t (nowcast) to t+4. The SPF data is available from1968q4 onwards,
and, consistent to our data on actuals, the last survey data we use
is that of 2010q4, which contain forecasts up to 2011q4.

Operation of these algorithms requires the specification of
a (sequence of) gain value(s) determining how quickly some
given information is incorporated into the algorithm’s coefficients
estimates. Recognizing the prominent role that the learning gains
have in determining the statistical properties of the estimates
associated with each algorithm (see, e.g., Benveniste et al., 1990),
here we follow the calibration approach proposed in Berardi and
Galimberti (2014). Particularly, we distinguish between two gain
determination rationales: as a choice of rational agents, selecting
the gains that minimize the (average) squared forecasting errors
over a given window of observations; and as a primitive parameter
of agents behavior, where the gains are selected so as to minimize
the distance of the algorithms’ forecasts to those collected through
survey forecasts. Regarding the windows used to select the gains
according to the criteria above we adopt two alternatives: a fixed
and a time-varying gain calibration. Under the fixed calibration we
pick the gain evaluating the corresponding criterion over the full
sample of forecasts that we have computed, and keep this gain
fixed throughout our exercise. For the time-varying calibration,
in contrast, we use a rolling window sample of 60 forecasts to
evaluate each gain determination criterion, hence selecting a new
gain for every iteration on the real-time learning process. In both
cases, the set of admissible gains is based on a grid of 100 values
constructed taking an upper bound, experimentally computed to
ensure algorithms’ stability, as reference.

Our design unfolds into a three-stages routine to generate the
forecasts associated with each learning algorithm: initialization,
estimation and forecasting, and evaluation. The first 75 observa-
tions in our sample (up to 1965q4) are used for the smoothing-
based initialization of the algorithms (following Berardi and
Galimberti, 2012). The next 60 observations (from 1966q1 to
1980q4) are used for the algorithms’ (first) time-varying calibra-
tion. Therefore, our evaluation sample corresponds to the period
from 1981q1 to 2010q4. To match the timing of information in the
SPF data set, we compute and evaluate forecasts over five horizons,
each of these with its own instance of gain calibrations.

3. Results

We start looking over the forecasts associated with each
algorithm and gain value included in the grid computations. Fig. 1
presents surfaces of average past performance for each algorithm
and variable, showing their evolution through time and for the
different gain values. Twomain observations arise: (i) the behavior
of each algorithm depends on the variable being forecasted,
whereas for a given variable the LS and SG algorithms behave
differently; (ii) the magnitudes of forecast errors were relatively
higher during the first decade in our sample, irrespective of the
variable forecasted and the algorithmused, an observation that can
be associatedwith the period of greater volatility that preceded the
GreatModeration in theUS economy (see Stock andWatson, 2003).

To obtain a relative assessment of the learning mechanisms
we now conduct two evaluation exercises comparing the forecasts
associated with the learning algorithms with respect to their
accuracy and their resemblance to the survey forecasts. We check
for the statistical significance of these paired comparisons using
tests common to the literature on forecast evaluation: the Diebold
and Mariano (1995) (DM) test for equal (unconditional) predictive
ability, and its more recently developed conditional counterpart
test of Giacomini and White (2006) (GW). Our coverage of
multiple forecasting horizons and VAR lag order specifications,
for robustness, requires performing a high quantity of such
comparisons.1 Hence, to synthesize these evaluations we adopt

1 To be specific, 40 for each pair of algorithms/calibrations: 5 horizons × 4
VARs× 2 evaluation criteria. An online Appendix (see Appendix A) is providedwith
the individual comparison results, and some descriptive statistics for each series of
forecasts.
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