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• We propose a general class of LRV estimators in the GMM framework.
• The LRV estimator includes some recently developed estimators as special cases.
• First order asymptotics of the Wald statistics based on general LRV estimators.
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a b s t r a c t

This note proposes a class of estimators for estimating the asymptotic covariancematrix of the generalized
method of moments (GMM) estimator in the stationary time series models. The proposed estimator
is general enough to include the traditional heteroskedasticity and autocorrelation consistent (HAC)
covariance estimator and some recently developed estimators, such as the cluster covariance estimator
and projection-based covariance estimator, as special cases. We also study the first order asymptotics of
theWald statistics based on the general covariance estimatorswhen the underlying smoothing parameter
is held fixed.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

In stationary time seriesmodels, the asymptotic covariancema-
trix of the generalized method of moments (GMM) estimator is
usually estimated nonparametrically by the kernel-based meth-
ods, where the bandwidth parameter is assumed to grow slowly
with the sample size in the asymptotics (see Newey and West,
1987; Andrews, 1991). Recent studies on heteroskedasticity and
autocorrelation consistent (HAC) based robust inference have de-
veloped alternative first order asymptotic theory (as compared to
the traditionalχ2-based approximation), whichwas shown to pro-
vide more accurate approximation to the sampling distributions

✩ This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-ShareAlike License, which permits non-
commercial use, distribution, and reproduction in any medium, provided the
original author and source are credited.
✩✩ This note is drawn from an early working paper entitled ‘‘Fixed-smoothing
asymptotics for time series’’ (arXiv:1204.4228). A substantial part of the working
paper appeared in Zhang and Shao (forthcoming), which has little overlap with this
note.
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of the associated test statistics. For example, Kiefer and Vogel-
sang (2005, KV, hereafter) developed a first order asymptotic the-
ory where the proportion of the bandwidth involved in the HAC
estimator to the sample size T , denoted as b, is held fixed in the
asymptotics. Using the higher-order Edgeworth expansions, Jans-
son (2004), Sun et al. (2008), Sun (2010) and Zhang and Shao (forth-
coming) rigorously proved that the fixed-b asymptotics provides
a high order refinement over the traditional small-b asymptotics
in the Gaussian location model. Sun (2013) developed a proce-
dure for hypothesis testing in time series models by using the non-
parametric series method. The basic idea is to project the time
series onto a space spanned by a set of Fourier basis functions
(see Phillips, 2005, for an early development) and construct the co-
variancematrix estimator based on the projection vectors with the
number of basis functions held fixed. Also see Sun (2011) for the
use of a similar idea in the inference of the trend regression mod-
els. Ibragimov and Müller (2010) proposed a subsampling based
t-statistic for robust inference where the unknown dependence
structure can be in the temporal, spatial or other forms. In their
paper, the number of non-overlapping blocks is held fixed. The t-
statistic based approach was extended by Bester et al. (2011) to
the inference of spatial and panel data with group structure. In
the context of misspecification testing, Chen and Qu (forthcom-
ing) proposed a modified M test of Kuan and Lee (2006) which
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involves dividing the full sample into several recursive subsamples
and constructing a normalizationmatrix based on them. In the sta-
tistical literature, Shao (2010) developed the self-normalized ap-
proach to inference for time series data that uses an inconsistent
long run variance (LRV) estimator based on recursive subsample
estimates. The self-normalized method is an extension of Lobato
(2001) from the sample autocovariances to more general approxi-
mately linear statistics and it coincides with KV’s fixed-b approach
in the inference of the mean of a stationary time series by using
the Bartlett kernel and letting b = 1. Although the above infer-
ence procedures are proposed in different settings and for different
problems and data structure, they share a common feature in the
sense that the underlying smoothing parameters in the asymptotic
covariancematrix estimator such as the number of basis functions,
the number of cluster groups and the number of recursive subsam-
ples, play a similar role as the bandwidth in the HAC estimator.

The goal of this note is to introduce a general class of estima-
tors for estimating the LRV matrix in the inference of stationary
time series models estimated by GMM. Our proposal includes the
traditional lag window type (or HAC) covariance estimator, the
projection-based covariance estimator, the cluster-based covari-
ance estimator and the blockwise recursive subsampling-based
covariance estimator as special cases. The general covariance es-
timator considered here involves projecting the original data onto
a space spanned by a sequence of basis functions (not necessar-
ily orthogonal), where the number of basis functions K plays a key
role in determining asymptotic properties of the estimator. Under
the fixed-K asymptotics, we show that the Wald statistic based on
the general LRV estimator converges to an (approximate) F distri-
bution with a scale constant depending only on K and the number
of restrictions being tested. Thus our result provides a unification
of the various recently proposed fixed-smoothing inference proce-
dures in the first order sense.

We introduce some notation. Denote by ⌊a⌋ the integer part
of a real number a. Let L2[0, 1] be the space of square integrable
functions on [0, 1]. Denote by D[0, 1] the space of functions on
[0, 1] which are right continuous and have left limits, endowed
with the Skorokhod topology (see Billingsley, 1999). Denote by
‘‘⇒’’ weak convergence in the Rq0-valued function space Dq0 [0, 1],
where q0 ∈ N. Define ‘‘→d’’ convergence in distribution. We use
‘‘⊗’’ to denote the Kronecker product in matrix algebra. The nota-
tion N(µ,Σ) is used to denote the multivariate normal distribu-
tion with mean µ and covariance Σ . Let χ2

k be a random variable
following χ2 distribution with k degrees of freedom.

2. Basic setup and assumptions

In linear and nonlinear models with moment conditions, it is
standard to employ GMM to estimate the model parameters. We
follow the GMM setup as described in KV. Consider a d × 1 vector
of parameters θ ∈ Θ ⊆ Rd of interest, where Θ is the parameter
space. Denote θ0 the true parameter of θ which is an interior point
of Θ . Let yt denote a vector of observed data and assume the
moment conditions

E[f (yt , θ)] = 0, t = 1, 2, . . . , T (1)

hold if and only if θ = θ0, where f (·) is m × 1 vector of functions
withm ≥ d and rank(E[∂ f (yt , θ0)/∂θ ′

]) = d. Whenm > d, the pa-
rameter θ is over-identified with the degree of over-identification
v = m− d. Define the partial sum gt(θ) = T−1 t

j=1 f (yj, θ). Then
the GMM estimator of θ0 is given by

θ̂T = argmin
θ∈Θ

gT (θ)′WTgT (θ), (2)

whereWT is am×m semi-positive definite weightingmatrix. Fur-
ther define

Gt(θ) = (Gt1(θ), . . . ,Gtm(θ))
′
=
∂gt(θ)
∂θ ′

=
1
T

t
j=1

∂ f (yj, θ)
∂θ ′

.

Using the mean value theorem for each element of gT , we have
gT (θ̂T ) = gT (θ0) + G̃T (θ̂T − θ0), where G̃T = (GT1(θ̃T1), . . . ,GTm

(θ̃Tm))
′ and θ̃Tj is between θ0 and θ̂T for each 1 ≤ j ≤ m. Note that

GT (θ̂T )
′WTgT (θ̂T ) = 0 by the first order condition, which implies

that

GT (θ̂T )
′WTgT (θ0)+ GT (θ̂T )

′WT G̃T (θ̂T − θ0)

= GT (θ̂T )
′WTgT (θ̂T ) = 0.

Solving the above equation, we have

T 1/2(θ̂T − θ0) = −(GT (θ̂T )
′WT G̃T )

−1GT (θ̂T )
′WT (T 1/2gT (θ0)).

To derive the asymptotic distribution of θ̂T , we make the following
high-level assumptions as KV and Sun (2010).

Assumption 2.1. θ̂T →
p θ0.

Assumption 2.2. T 1/2g⌊Tr⌋(θ0) ⇒ ∆Wm(r)where

∆∆′
= Ω =

+∞
j=−∞

E[f (yt , θ0)f (yt−j, θ0)
′
],

and Wm(r) is a m−dimensional vector of independent standard
Brownian motions.

Assumption 2.3. G̃T →
p G0 uniformly for all θ̃Tj between θ̂T and θ0,

where G0 = E[∂ f (yj, θ0)/∂θ ′
] and 1 ≤ j ≤ m.

Assumption 2.4. The weighting matrix WT is symmetric and
semi-positive definite such thatWT →

p W0 and G′

0W0G0 is positive
definite.

Under Assumptions 2.1–2.4, it is easy to see that

T 1/2(θ̂T − θ0)→
d
−(G′

0W0G0)
−1G′

0W0∆Wm(1)=d N(0, V0),

where ‘‘=d’’ denotes ‘‘equal in distribution’’ and the asymptotic co-
variance matrix V0 := (G′

0W0G0)
−1G′

0W0ΩW0G0(G′

0W0G0)
−1. To

make inference on θ0, we have to estimate G0,W0 and the LRV
matrix Ω . Under the above assumptions, G0 and W0 can be con-
sistently estimated by their sample counterparts GT (θ̂T ) and WT
respectively. It remains to estimate the LRV matrix Ω . In the next
section, we introduce a general class of estimators forΩ and V0.

3. LRV estimators

To present the idea, we focus on the hypothesis testing problem
that H0 : r(θ0) = 0 versus the alternative that Ha : r(θ0) ≠ 0,
where r(θ) is a p× 1 continuously differentiable function with the
first order derivative matrix R(θ) = ∂r(θ)/∂θ ′ and p ≤ d. Let

V̂T = (GT (θ̂T )
′WTGT (θ̂T ))

−1

× (GT (θ̂T )
′WT Ω̂TWTGT (θ̂T ))(GT (θ̂T )

′WTGT (θ̂T ))
−1,

be an estimator of V0, where Ω̂T is the LRV estimate ofΩ . TheWald
statistic for testing H0 against Ha is defined as

FT = Tr(θ̂T )′D̂−1
T r(θ̂T )/p, (3)

where D̂T = R(θ̂T )V̂TR(θ̂T )′. The widely used lag window type LRV
estimator is given by

Ω̂T =
1
T

T
i=1

T
j=1

K


i − j
bT


f (yi, θ̂T )f (yj, θ̂T )′, (4)
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